Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 11(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431192

ABSTRACT

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiorgan manifestations, including pleuropulmonary involvement (20-90%). The precise mechanism of pleuropulmonary involvement in SLE is not well-understood; however, systemic type 1 interferons, circulating immune complexes, and neutrophils seem to play essential roles. There are eight types of pleuropulmonary involvement: lupus pleuritis, pleural effusion, acute lupus pneumonitis, shrinking lung syndrome, interstitial lung disease, diffuse alveolar hemorrhage (DAH), pulmonary arterial hypertension, and pulmonary embolism. DAH has a high mortality rate (68-75%). The diagnostic tools for pleuropulmonary involvement in SLE include chest X-ray (CXR), computed tomography (CT), pulmonary function tests (PFT), bronchoalveolar lavage, biopsy, technetium-99m hexamethylprophylene amine oxime perfusion scan, and (18)F-fluorodeoxyglucose positron emission tomography. An approach for detecting pleuropulmonary involvement in SLE includes high-resolution CT, CXR, and PFT. Little is known about specific therapies for pleuropulmonary involvement in SLE. However, immunosuppressive therapies such as corticosteroids and cyclophosphamide are generally used. Rituximab has also been successfully used in three of the eight pleuropulmonary involvement forms: lupus pleuritis, acute lupus pneumonitis, and shrinking lung syndrome. Pleuropulmonary manifestations are part of the clinical criteria for SLE diagnosis. However, no review article has focused on the involvement of pleuropulmonary disease in SLE. Therefore, this article summarizes the literature on the epidemiology, pathogenesis, diagnosis, and management of pleuropulmonary involvement in SLE.

2.
Materials (Basel) ; 13(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053999

ABSTRACT

Corrosion is considered as one of the main factors in the structural performance deterioration of steel members. In this study, experimental and numerical methods were used to assess the reduction in compressive strength of short tubular steel columns with artificially fabricated local corrosion damage. The corrosion damage was varied with different depths, heights, circumferences, and locations along the column. A parametric numerical study was performed to establish a correlation between the residual compressive strength and the severity of corrosion damage. The results showed that as the corrosion depth, height and circumference increased, the compressive strength decreased linearly. As for the corrosion height, the residual compressive strength became constant after decreasing linearly when the corrosion height was greater than the half-wavelength of buckling of the short columns. An equation is presented to evaluate the residual compressive strength of short columns with local corrosion wherein the volume of the corrosion damage was used as a reduction factor in calculating the compressive strength. The percentage error using the presented equation was found to be within 11.4%.

3.
Sensors (Basel) ; 19(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909427

ABSTRACT

In this study, a time-dependent corrosion depth estimation method using atmospheric corrosion monitor (ACM) sensor data to evaluate time-dependent corrosion behaviors is proposed. For the time-dependent corrosion depth estimation of uncoated carbon steel and weathering steel, acceleration corrosion tests were conducted in salt-spray corrosion environments and evaluated with a corrosion damage estimation method using ACM sensing data and corrosion loss data of the tested steel specimens. To estimate the time-dependent corrosion depth using corrosion current by an ACM sensor, the relationship between the mean corrosion depth calculated from the weight loss method and the corrosion current was evaluated. The mean corrosion depth was estimated by calculating the corrosion current and evaluating the relationship between the mean corrosion depth and corrosion current during the expected period. From the test and estimation results, the corrosion current demonstrated a good linear correlation with the mean corrosion depth of carbon steel and weathering. The calculated mean corrosion depth is nearly the same as that of the tested specimen, which can be well used to estimate corrosion rate for the uncoated carbon steel and weathering steel.

4.
Materials (Basel) ; 11(7)2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30037020

ABSTRACT

Local corrosion damage of steel structures can occur due to damage to the paint-coated surface of structures. Such damage can affect the structural behavior and performance of steel structures. Compressive loading tests were, thus, carried out in this study to examine the effect of local corrosion damage on the structural behavior and strength of tubular members. Artificial cross-sectional damage on the surface of the tubular members was introduced to reflect the actual corroded damage under exposure to a corrosion environment. The compressive failure modes and compressive strengths of the tubular members were compared according to the localized cross-sectional damage. The compressive loading test results showed that the compressive strengths were affected by the damaged width within a certain range. In addition, finite element analysis (FEA) was conducted with various parameters to determine the effects of the damage on the failure mode and compressive strength of the stub column. From the FEA results, the compressive strength was decreased proportionally with the equivalent cross-sectional area ratio and damaged volume ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...