Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32967955

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Disease Models, Animal , Female , Humans , Immunity, Cellular , Immunization, Secondary , Immunogenicity, Vaccine , Mice , Plasmids/administration & dosage , Plasmids/genetics , Plasmids/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage
2.
Lancet Infect Dis ; 20(7): 816-826, 2020 07.
Article in English | MEDLINE | ID: mdl-32325038

ABSTRACT

BACKGROUND: Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS: This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS: Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION: ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING: UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.


Subject(s)
Dose-Response Relationship, Immunologic , Immunogenicity, Vaccine , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/administration & dosage , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/genetics , United Kingdom , Vaccines, DNA , Young Adult
3.
Virus Res ; 278: 197863, 2020 03.
Article in English | MEDLINE | ID: mdl-31945421

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe pulmonary infection, with ∼35 % mortality. Spike glycoprotein (S) of MERS-CoV is a key target for vaccines and therapeutics because S mediates viral entry and membrane-fusion to host cells. Here, four different S subunit proteins, receptor-binding domain (RBD; 358-606 aa), S1 (1-751 aa), S2 (752-1296 aa), and SΔTM (1-1296 aa), were generated using the baculoviral system and immunized in mice to develop neutralizing antibodies. We developed 77 hybridomas and selected five neutralizing mAbs by immunization with SΔTM against MERS-CoV EMC/2012 strain S-pseudotyped lentivirus. However, all five monoclonal antibodies (mAb) did not neutralize the pseudotyped V534A mutation. Additionally, one mAb RBD-14F8 did not show neutralizing activity against pseudoviruses with amino acid substitution of L506 F or D509 G (England1 strain, EMC/2012 L506 F, and EMC/2012 D509 G), and RBD-43E4 mAb could not neutralize the pseudotyped I529 T mutation, while three other neutralizing mAbs showed broad neutralizing activity. This implies that the mutation in residue 506-509, 529, and 534 of S is critical to generate neutralization escape variants of MERS-CoV. Interestingly, all five neutralizing mAbs have binding affinity to RBD, although most mAbs generated by RBD did not have neutralizing activity. Additionally, chimeric antibodies of RBD-14F8 and RBD-43E4 with human Fc and light chain showed neutralizing effect against wild type MERS-CoV KOR/KNIH/002, similar to the original mouse mAbs. Thus, our mAbs can be utilized for the identification of specific mutations of MERS-CoV.


Subject(s)
Antibodies, Monoclonal/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Binding Sites , Cell Line , Cross Protection , Epitopes , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Neutralization Tests , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
4.
Genes Genomics ; 40(5): 475-484, 2018 05.
Article in English | MEDLINE | ID: mdl-29892958

ABSTRACT

The Drosophila nuclear receptor-binding SET domain protein (NSD) gene encodes the Drosophila ortholog of mammalian NSD family members that are important in many aspects of development and disease in humans. In this study, we observed that overexpression of Drosophila NSD in imaginal discs induces organ atrophy. Thus, to gain an understanding of the transcriptional regulation of the gene, we analyzed the NSD promoter region. First, we identified the presence of three putative DNA replication-related element (DRE) sequences in its promoter region, where DRE-binding factor (DREF) could bind for transcriptional activation. In the experiments with the fly GAL4-UAS system, we demonstrated that overexpressed DREF increased the endogenous NSD transcription. To confirm the role of DREF as a transcriptional activator on the NSD expression, we generated a series of luciferase reporter gene constructs containing deleted portions of the 5'-flanking regions as well as point mutations in the putative DRE sites. When transiently transfected into S2 cells, the deletion construct containing no DRE sites showed dramatic decrease in the NSD promoter activity, but only two sites near the transcriptional start site were important. Furthermore, we verified the direct interaction of DREF with the two positively cis-acting sequences on the NSD promoter by chromatin immunoprecipitation assay. Taken together, these results demonstrated that NSD is one of the downstream targets of the DRE/DREF pathway that is associated with various cellular processes in Drosophila, indicating that our findings may contribute to the understanding of molecular mechanisms in complex disorders associated with NSD family members in humans.


Subject(s)
Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/physiology , Animals , Binding Sites/genetics , Chromatin Immunoprecipitation , DNA Replication , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation/genetics , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/physiology , Humans , Promoter Regions, Genetic/genetics , Transcription Initiation Site , Transcription, Genetic/genetics , Transcriptional Activation/genetics
5.
BMC Genomics ; 19(Suppl 2): 100, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29764371

ABSTRACT

BACKGROUND: The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions. RESULTS: We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses. CONCLUSIONS: We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.


Subject(s)
Apocynaceae/genetics , Coffea/genetics , Genome, Plant , Vitis/genetics , Algorithms , Animals , Evolution, Molecular , Gene Order , Models, Genetic , Mutation , Phylogeny , Synteny
6.
Biochem Biophys Res Commun ; 496(4): 1134-1140, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29410178

ABSTRACT

The nuclear receptor-binding SET domain protein gene (NSD) family encodes a group of highly conserved SET domain-containing histone lysine methyltransferases that are important in multiple aspects of development in various organisms. The association of NSD1 duplications has been reported with growth retardation diseases in humans. In this study, to gain insight into the molecular mechanisms by which the overexpression of NSD1 influences the disease progression, we analyzed the gain-of-function mutant phenotypes of the Drosophila NSD using the GAL4/UAS system. Ubiquitous overexpression of NSD in the fly caused developmental delay and reduced body size at the larval stage, resulting in pupal lethality. Moreover, targeted overexpression in various developing tissues led to significant phenotype alterations, and the gain-of-function phenotypes were rescued by NSD RNAi knockdown. We also demonstrated that NSD overexpression not only enhanced the transcription of pro-apoptotic genes but also activated caspase. The atrophied phenotype of NSD-overexpressing wing was strongly suppressed by a loss-of-function mutation in hemipterous, which encodes a Drosophila Jun N-terminal kinase. Taken together, our findings suggest that NSD induces apoptosis via the activation of JNK, and thus contributes to the understanding of the molecular mechanisms involved in NSD1-related diseases in humans.


Subject(s)
Apoptosis/physiology , Drosophila Proteins/metabolism , Drosophila/physiology , Histone-Lysine N-Methyltransferase/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Metabolic Networks and Pathways/physiology , Up-Regulation/physiology , Animals , Body Size/physiology , Enzyme Activation , Histone Methyltransferases
7.
PLoS Genet ; 9(4): e1003412, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593018

ABSTRACT

DJ-1, a Parkinson's disease (PD)-associated gene, has been shown to protect against oxidative stress in Drosophila. However, the molecular mechanism underlying oxidative stress-induced phenotypes, including apoptosis, locomotive defects, and lethality, in DJ-1-deficient flies is not fully understood. Here we showed that Daxx-like protein (DLP), a Drosophila homologue of the mammalian Death domain-associated protein (Daxx), was upregulated under oxidative stress conditions in the loss-of-function mutants of Drosophila DJ-1ß, a Drosophila homologue of DJ-1. DLP overexpression induced apoptosis via the c-Jun N-terminal kinase (JNK)/Drosophila forkhead box subgroup O (dFOXO) pathway, whereas loss of DLP increased resistance to oxidative stress and UV irradiation. Moreover, the oxidative stress-induced phenotypes of DJ-1ß mutants were dramatically rescued by DLP deficiency, suggesting that enhanced expression of DLP contributes to the DJ-1ß mutant phenotypes. Interestingly, we found that dFOXO was required for the increase in DLP expression in DJ-1ß mutants and that dFOXO activity was increased in the heads of DJ-1ß mutants. In addition, subcellular localization of DLP appeared to be influenced by DJ-1 expression so that cytosolic DLP was increased in DJ-1ß mutants. Similarly, in mammalian cells, Daxx translocation from the nucleus to the cytosol was suppressed by overexpressed DJ-1ß under oxidative stress conditions; and, furthermore, targeted expression of DJ-1ß to mitochondria efficiently inhibited the Daxx translocation. Taken together, our findings demonstrate that DJ-1ß protects flies against oxidative stress- and UV-induced apoptosis by regulating the subcellular localization and gene expression of DLP, thus implying that Daxx-induced apoptosis is involved in the pathogenesis of DJ-1-associated PD.


Subject(s)
Adaptor Proteins, Signal Transducing , Drosophila Proteins , Forkhead Transcription Factors , Nerve Tissue Proteins , Nuclear Proteins , Oxidative Stress , Parkinson Disease , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/radiation effects , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mutation , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Radiation Tolerance/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...