Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
iScience ; 27(2): 108813, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318349

ABSTRACT

Sickle cell disease (SCD) is characterized by hemolysis, vaso-occlusion, and ischemia. HIV-1 infection was previously shown to be suppressed in SCD PBMCs. Here, we report that HIV-1 suppression is attributed to the increased expression of iron, hypoxia, and interferon-induced innate antiviral factors. Inhibition of upregulated antiviral genes, HMOX-1, CDKN1A, and CH25H, increased HIV-1 replication in SCD PBMCs, suggesting their critical role in HIV-1 suppression. Levels of IFN-ß were elevated in SCD patients. Sickle cell hemoglobin (HbS) treatment of THP-1-derived and primary monocyte-derived macrophages induced production of IFN-ß, upregulated antiviral gene expression, and suppressed HIV-1 infection. Infection with mouse-adapted EcoHIV was suppressed in the SCD mice that also exhibited elevated levels of antiviral restriction factors. Our findings suggest that hemolysis and release of HbS leads to the induction of IFN-ß production, induction of cellular antiviral state by the expression of iron and IFN-driven factors, and suppression of HIV-1 infection.

2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445980

ABSTRACT

In patients with sickle cell disease (SCD), chronic hemolysis and frequent blood transfusions cause iron overload and accumulation in the kidneys. The iron deposition is found in the renal cortex and correlates with the severity of hemolysis. In this study, we observed a significant accumulation of iron in the renal cortex of a mouse model of SCD, and assessed the expression of the proteins involved in maintaining renal iron homeostasis. Despite the intracellular iron accumulation, the levels of the transferrin receptor in the kidneys were increased, but the levels of the iron exporter ferroportin were not altered in SCD mice. Ferroportin is regulated by hepcidin, which binds to it and promotes its degradation. We found reduced serum hepcidin levels but increased renal hepcidin production in SCD mice. Furthermore, we observed significant macrophage infiltration and increased expression of intercellular adhesion molecule 1 in the endothelial cells of the kidneys in SCD mice. These observations correlated with elevated levels of proinflammatory cytokines IL-1ß and IL-6, which can potentially stimulate hepcidin expression. Taken together, our results demonstrate that in individuals with SCD, a renal inflammation state induces renal hepcidin production that blocks the upregulation of ferroportin levels, resulting in dysregulation of iron homeostasis in the kidney and iron deposition in the renal cortex.


Subject(s)
Anemia, Sickle Cell , Hepcidins , Mice , Animals , Hepcidins/metabolism , Hemolysis , Endothelial Cells/metabolism , Iron/metabolism , Anemia, Sickle Cell/genetics
3.
Res Sq ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333330

ABSTRACT

The Ebola virus (EBOV) transcriptional regulation involves host protein phosphatases PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The 1E7-03 compound, which targets PP1, induces VP30 phosphorylation and inhibits EBOV infection. This study aimed to investigate the role of PP1 in EBOV replication. When EBOV-infected cells were continuously treated with 1E7-03, the NP E619K mutation was selected. This mutation moderately reduced EBOV minigenome transcription, which was restored by the treatment with 1E7-03. Formation of EBOV capsids, when NP was co-expressed with VP24 and VP35, was impaired with NPE 619K. Treatment with 1E7-03 restored capsid formation by NP E619K mutation, but inhibited capsids formed by WT NP. The dimerization of NP E619K, tested in a split NanoBiT assay, was significantly decreased (~ 15-fold) compared to WT NP. NP E619K bound more efficiently to PP1 (~ 3-fold) but not B56 subunit of PP2A or VP30. Cross-linking and co-immunoprecipitation experiments showed fewer monomers and dimers for NP E619K which were increased with 1E7-03 treatment. NP E619K showed increased co-localization with PP1α compared to WT NP. Mutations of potential PP1 binding sites and NP deletions disrupted its interaction with PP1. Collectively, our findings suggest that PP1 binding to the NP regulates NP dimerization and capsid formation, and that NP E619K mutation, which has the enhanced PP1 binding, disrupts these processes. Our results point to a new role for PP1 in EBOV replication in which NP binding to PP1 may facilitate viral transcription by delaying capsid formation and EBOV replication.

6.
Front Med (Lausanne) ; 9: 1029224, 2022.
Article in English | MEDLINE | ID: mdl-36341242

ABSTRACT

Sickle cell disease (SCD) is a group of inherited blood disorders affecting the ß-globin gene, resulting in the polymerization of hemoglobin and subsequent sickling of the red blood cell. Renal disease, the most common complication in SCD, begins in childhood with glomerular hyperfiltration and then progresses into albuminuria, a fast decline of glomerular filtration, and renal failure in adults. This mini-review focuses on glomerular filtration abnormalities and the mechanisms of hyperfiltration, explores genetic modifiers and methods of estimating glomerular filtration rates, and examines novel biomarkers of glomerular filtration in SCD.

7.
Am J Nephrol ; 52(7): 582-587, 2021.
Article in English | MEDLINE | ID: mdl-34375971

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) is a prevalent complication of sickle cell anemia (SCA). Hyperfiltration that delayed detection of CKD is common in SCA patients. Identification of novel urinary biomarkers correlating with glomerular filtration rates may help to detect and predict progression of renal disease. METHODS: Reanalysis of mass spectra of urinary samples obtained from University of Illinois at Chicago identified kringle domain-containing protein HGFL. RESULTS: HGFL levels correlated with hyperfiltration, were significantly reduced at CKD stage 1 compared to stage 0, negatively correlated with progression of CKD and were suitable for differentiation of stage 1. Better prediction of CKD progression to stage 2 was observed for HGFL-based risk prediction compared to the estimated glomerular filtration rate (eGFR)-based prediction. Results from a Howard University patient cohort supported the utility of HGFL-based test for the differentiation of stage 1 of CKD. CONCLUSION: Urinary HGFL may contribute additional information beyond eGFR and improve diagnosis of early-stage CKD in SCA patients.


Subject(s)
Anemia, Sickle Cell/complications , Hepatocyte Growth Factor/urine , Proto-Oncogene Proteins/urine , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/urine , Adolescent , Adult , Aged , Biomarkers/urine , Disease Progression , Early Diagnosis , Female , Glomerular Filtration Rate , Hepatocyte Growth Factor/chemistry , Humans , Kringles , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins/chemistry , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/physiopathology , Young Adult
8.
Dis Model Mech ; 14(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34308967

ABSTRACT

People of African ancestry living with the human immunodeficiency virus-1 (HIV-1) are at risk of developing HIV-associated nephropathy (HIVAN). Children with HIVAN frequently show high plasma fibroblast growth factor-2 (FGF-2) levels; however, the role of circulating FGF-2 in the pathogenesis of childhood HIVAN is unclear. Here, we explored how circulating FGF-2 affected the outcome of HIVAN in young HIV-Tg26 mice. Briefly, we demonstrated that FGF-2 was preferentially recruited in the kidneys of mice without pre-existing kidney disease, precipitating HIVAN by activating phosphorylated extracellular signal-regulated kinase (pERK) in renal epithelial cells, without inducing the expression of HIV-1 genes. Wild-type mice injected with recombinant adenoviral FGF-2 (rAd-FGF-2) vectors carrying a secreted form of human FGF-2 developed transient and reversible HIVAN-like lesions, including proteinuria and glomerular enlargement. HIV-Tg26 mice injected with rAd-FGF-2 vectors developed more-significant proliferative and pro-fibrotic inflammatory lesions, similar to those seen in childhood HIVAN. These lesions were partially reversed by treating mice with the FGF/VEGF receptor tyrosine kinase inhibitor PD173074. These findings suggest that high plasma FGF-2 levels may be an independent risk factor for precipitating HIVAN in young children.


Subject(s)
AIDS-Associated Nephropathy , HIV-1 , AIDS-Associated Nephropathy/genetics , Animals , Child, Preschool , Disease Models, Animal , Fibroblast Growth Factor 2 , HIV-1/genetics , Humans , Mice , Mice, Transgenic
10.
Viruses ; 12(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32121564

ABSTRACT

While antiretroviral therapy increases the longevity of people living with HIV (PLWH), about 30% of this population suffers from three or more concurrent comorbidities, whose mechanisms are not well understood. Chronic activation and dysfunction of the immune system could be one potential cause of these comorbidities. We recently demonstrated reduced macrophage infiltration and delayed resolution of inflammation in the lungs of HIV-transgenic mice. Additionally, trans-endothelial migration of HIV-positive macrophages was reduced in vitro. Here, we analyze macrophages' response to LPS challenge in the kidney and peritoneum of HIV-Tg mice. In contrast to the lung infiltration, renal and peritoneal macrophage infiltrations were similar in WT and HIV-Tg mice. Higher levels of HIV-1 gene expression were detected in lung macrophages compared to peritoneal macrophages. In peritoneal macrophages, HIV-1 gene expression was increased when they were cultured at 21% O2 compared to 5% O2, inversely correlating with reduced trans-endothelial migration at higher oxygen levels in vitro. The resolution of macrophage infiltration was reduced in both the lung and the peritoneal cavity of HIV-Tg mice. Taken together, our study described the organ-specific alteration of macrophage dynamics in HIV-Tg mice. The delayed resolution of macrophage infiltration might constitute a risk factor for the development of multiple comorbidities in PLWH.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Macrophages/virology , Animals , Biomarkers , Disease Models, Animal , HIV Infections/immunology , HIV Infections/pathology , Host-Pathogen Interactions/immunology , Humans , Immunohistochemistry , Immunophenotyping , Kidney/metabolism , Kidney/pathology , Lung/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/virology , Mice , Mice, Transgenic , Organ Specificity , Oxygen/metabolism , Transendothelial and Transepithelial Migration/immunology
11.
Viruses ; 12(2)2020 02 12.
Article in English | MEDLINE | ID: mdl-32059509

ABSTRACT

Human immunodeficiency virus (HIV)-infected individuals treated with anti-retroviral therapy often develop chronic non-infectious lung disease. To determine the mechanism of HIV-1-associated lung disease we evaluated the dynamics of lung leukocytes in HIV-1 transgenic (Tg) mice with integrated HIV-1 provirus. In HIV-Tg mice, lipopolysacharide (LPS) induced significantly higher levels of neutrophil infiltration in the lungs compared to wild-type (WT) mice. In WT mice, the initial neutrophil infiltration was followed by macrophage infiltration and fast resolution of leukocytes infiltration. In HIV-Tg mice, resolution of lung infiltration by both neutrophils and macrophages was significantly delayed, with macrophages accumulating in the lumen of lung capillaries resulting in a 45% higher rate of mortality. Trans-endothelial migration of HIV-Tg macrophages was significantly reduced in vitro and this reduction correlated with lower HIV-1 gene expression. HIV-1 transcription inhibitor, 1E7-03, enhanced trans-endothelial migration of HIV-Tg macrophages in vitro, decreased lung neutrophil infiltration in vivo, and increased lung macrophage levels in HIV-Tg mice. Moreover, 1E7-03 reduced levels of inflammatory IL-6 cytokine, improved bleeding score and decreased lung injury. Together this indicates that inhibitors of HIV-1 transcription can correct abnormal dynamics of leukocyte infiltration in HIV-Tg, pointing to the utility of transcription inhibition in the treatment of HIV-1 associated chronic lung disease.


Subject(s)
HIV Infections/physiopathology , Indoles/pharmacology , Lung/pathology , Neutrophil Infiltration/drug effects , Transcription, Genetic/drug effects , Urea/analogs & derivatives , Animals , Cytokines/immunology , HIV Infections/immunology , HIV-1/drug effects , HIV-1/genetics , Inflammation , Lipopolysaccharides , Lung/immunology , Lung/virology , Macrophages/immunology , Male , Mice , Mice, Transgenic , Specific Pathogen-Free Organisms , Urea/pharmacology
12.
J Infect Dis ; 218(suppl_5): S627-S635, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30169869

ABSTRACT

Background: Ebola virus (EBOV) infection causes severe hemorrhagic fever. EBOV transcription is controlled by host protein phosphatase 1 (PP1), which dephosphorylates VP30 protein. We previously developed 1E7-03, a compound targeting a noncatalytic site of PP1 that induced VP30 phosphorylation and inhibited EBOV transcription. Here, we attempted to further improve 1E7-03, which was not stable in murine serum. Results: High-throughput screening with EBOV-green fluorescent protein was conducted on 72 1E7-03 analogs and identified 6 best inhibitory and the least toxic compounds. A parallel in silico screening of compounds from the ZINC database by docking to PP1 identified the best-binding compound C31, which was also present among the top 6 compounds found in the viral screen. C31 showed the best EBOV inhibitory activity among the top 6 compounds and also inhibited EBOV minigenome. C31 bound to the PP1 C-terminal groove in vitro and increased VP30 phosphorylation in cultured cells. C31 demonstrated improved stability in mouse plasma and cell permeability, compared with 1E7-03. It was also detected for 24 hours after injection in mice. Conclusion: C31 represents a novel PP1-targeting EBOV inhibitor with improved pharmacological properties that can be further evaluated for future antifiloviral therapy.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Protein Phosphatase 1/metabolism , Virus Replication/drug effects , Animals , Catalytic Domain , Drug Stability , Ebolavirus/physiology , HEK293 Cells , Humans , Mice , Molecular Docking Simulation , Phosphorylation , Protein Phosphatase 1/chemistry , Transcription Factors/metabolism , Viral Proteins/metabolism
13.
Haematologica ; 103(5): 787-798, 2018 05.
Article in English | MEDLINE | ID: mdl-29519868

ABSTRACT

Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease.


Subject(s)
Aminopyridines/pharmacology , Anemia, Sickle Cell/physiopathology , Endothelium, Vascular/drug effects , Kidney/drug effects , Macrophages/drug effects , Pyridones/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cells, Cultured , Endothelium, Vascular/injuries , Endothelium, Vascular/pathology , Humans , Kidney/injuries , Kidney/pathology , Macrophages/pathology , Mice
16.
Oncotarget ; 8(44): 76749-76769, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100346

ABSTRACT

We recently identified the protein phosphatase-1 - targeting compound, 1E7-03 which inhibited HIV-1 in vitro. Here, we investigated the effect of 1E7-03 on HIV-1 infection in vivo by analyzing its metabolic stability and antiviral activity of 1E7-03 and its metabolites in HIV-1 infected NSG-humanized mice. 1E7-03 was degraded in serum and formed two major degradation products, DP1 and DP3, which bound protein phosphatase-1 in vitro. However, their anti-viral activities were significantly reduced due to inefficient cell permeability. In cultured cells, 1E7-03 reduced expression of several protein phosphatase-1 regulatory subunits including Sds22 as determined by a label free quantitative proteomics analysis. In HIV-1-infected humanized mice, 1E7-03 significantly reduced plasma HIV-1 RNA levels, similar to the previously described HIV-1 transcription inhibitor F07#13. We synthesized a DP1 analog, DP1-07 with a truncated side chain, which showed improved cell permeability and longer pharmacokinetic retention in mice. But DP1-07 was less efficient than 1E7-03 as a HIV-1 inhibitor both in vitro and in vivo, indicating that the full side chain of 1E7-03 was essential for its anti-HIV activity. Analysis of 1E7-03 stability in plasma and liver microsomes showed that the compound was stable in human, primate and ferret plasma but not in rodent plasma. However, 1E7-03 was not stable in human liver microsomes. Our findings suggest that 1E7-03 is a good candidate for future development of HIV-1 transcription inhibitors. Further structural modification and advanced formulations are needed to improve its metabolic stability and enhance its antiviral activity in non-human primate animals and humans.

17.
Biology (Basel) ; 5(4)2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27918433

ABSTRACT

Protein phosphatase 1 (PP1), a cellular serine/threonine phosphatase, is targeted to cellular promoters by its major regulatory subunits, PP1 nuclear targeting subunit, nuclear inhibitor of PP1 (NIPP1) and RepoMan. PP1 is also targeted to RNA polymerase II (RNAPII) by NIPP1 where it can dephosphorylate RNAPII and cycle-dependent kinase 9 (CDK9). Here, we show that treatment of cells with a small molecule activator of PP1 increases the abundance of a neuregulin-1 (NRG-1)-derived peptide. NRG-1 mRNA and protein levels were increased in the cells stably or transiently expressing mutant NIPP1 (mNIPP1) that does not bind PP1, but not in the cells expressing NIPP1. Expression of mNIPP1 also activated the NRG-1 promoter in an NF-κB-dependent manner. Analysis of extracts from mNIPP1 expressing cells by glycerol gradient centrifugation showed a redistribution of PP1 and CDK9 between large and small molecular weight complexes, and increased CDK9 Thr-186 phosphorylation. This correlated with the increased CDK9 activity. Further, RNAPII co-precipitated with mNIPP1, and phosphorylation of RNAPII C-terminal domain (CTD) Ser-2 residues was greater in cells expressing mNIPP1. In mNIPP1 expressing cells, okadaic acid, a cell-permeable inhibitor of PP1, did not increase Ser-2 CTD phosphorylation inhibited by flavopiridol, in contrast to the NIPP1 expressing cells, suggesting that PP1 was no longer involved in RNAPII dephosphorylation. Finally, media conditioned with mNIPP1 cells induced the proliferation of wild type 84-31 cells, consistent with a role of neuregulin-1 as a growth promoting factor. Our study indicates that deregulation of PP1/NIPP1 holoenzyme activates NRG-1 expression through RNAPII and CDK9 phosphorylation in a NF-κB dependent manner.

18.
Blood Adv ; 1(3): 170-183, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-28203649

ABSTRACT

The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

19.
Am J Physiol Heart Circ Physiol ; 309(8): H1314-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26276817

ABSTRACT

Critically ill children can develop bleeding complications when treated with heparin-like drugs. These events are usually attributed to the anticoagulant activity of these drugs. However, previous studies showed that fibroblast growth factor-2 (FGF-2), a heparin-binding growth factor released in the circulation of these patients, could precipitate intestinal hemorrhages in mice treated with the heparin-like drug pentosan polysulfate (PPS). Yet very little is known about how FGF-2 induces bleeding complications in combination with heparin-like drugs. Here, we examined the mechanisms by which circulating FGF-2 induces intestinal hemorrhages in mice treated with PPS. We used a well-characterized mouse model of intestinal hemorrhages induced by FGF-2 plus PPS. Adult FVB/N mice were infected with adenovirus carrying Lac-Z or a secreted form of recombinant human FGF-2, and injected with PPS, at doses that do not induce bleeding complications per se. Mice treated with FGF-2 in combination with PPS developed an intestinal inflammatory reaction that increased the permeability and disrupted the integrity of submucosal intestinal vessels. These changes, together with the anticoagulant activity of PPS, induced lethal hemorrhages. Moreover, a genetically modified form of the endothelial ligand angiopoietin-1 (Ang-1*), which has powerful antipermeability and anti-inflammatory activity, prevented the lethal bleeding complications without correcting the anticoagulant status of these mice. These findings define new mechanisms through which FGF-2 and Ang-1* modulate the outcome of intestinal bleeding complications induced by PPS in mice and may have wider clinical implications for critically ill children treated with heparin-like drugs.


Subject(s)
Angiopoietin-1/biosynthesis , Fibroblast Growth Factor 2/biosynthesis , Gastrointestinal Hemorrhage/prevention & control , Genetic Therapy/methods , Intestine, Small/metabolism , Adenoviridae/genetics , Angiopoietin-1/genetics , Animals , Blood Coagulation , Capillary Permeability , Disease Models, Animal , Fibroblast Growth Factor 2/genetics , Gastrointestinal Hemorrhage/chemically induced , Gastrointestinal Hemorrhage/genetics , Gastrointestinal Hemorrhage/metabolism , Gastrointestinal Hemorrhage/pathology , Gene Transfer Techniques , Genetic Vectors , Inflammation Mediators/metabolism , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/prevention & control , Intestine, Small/blood supply , Intestine, Small/pathology , Macrophages/metabolism , Male , Matrix Metalloproteinases/metabolism , Mice , Pentosan Sulfuric Polyester
20.
Future Virol ; 10(3): 221-232, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26213559

ABSTRACT

The current Ebola virus disease (EVD) outbreak in West Africa is the largest with over 5100 deaths in four West African countries as of 14 November 2014. EVD has high case-fatality rates but no licensed treatment or vaccine is yet available. Several vaccine candidates that protected nonhuman primates are not yet available for clinical use. Slow development of vaccine-stimulated immunity, sporadic nature and fast progression of EVD underlines the need for the development of effective postexposure therapeutic drugs. WHO encouraged the use of untested drugs for EVD to curb the fast-spreading outbreak. Here, we summarize therapeutics for EVD including monoclonal antibody-based therapy and inhibitors of viral replication including our recently developed small-molecule inhibitors of VP30 dephosphorylation.

SELECTION OF CITATIONS
SEARCH DETAIL