Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Heliyon ; 10(6): e27206, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515724

ABSTRACT

Background and aims: Cardiomyocyte hypertrophy and interstitial fibrosis are key components of myocardial remodeling in Heart Failure (HF) with preserved (HFpEF) or reduced ejection fraction (HFrEF). MicroRNAs (miRNAs) are non-coding, evolutionarily conserved RNA molecules that may offer novel insights into myocardial remodeling. This study aimed to characterize miRNA expression in HFpEF (LVEF ≥ 45%) and HFrEF (LVEF < 45%) and its association with myocardial remodeling. Methods: Prospectively enrolled symptomatic HF patients (HFpEF:n = 36; HFrEF:n = 31) and controls (n = 23) underwent cardiac magnetic resonance imaging with T1-mapping and circulating miRNA expression (OpenArray system). Results: 13 of 188 miRNAs were differentially expressed between HF groups (11 downregulated in HFpEF). Myocardial extracellular volume (ECV) was increased in both HF groups (HFpEF 30 ± 5%; HFrEF 30 ± 3%; controls 26 ± 2%, p < 0.001). miR-128a-3p, linked to cardiac hypertrophy, fibrosis, and dysfunction, correlated positively with ECV in HFpEF (r = 0.60, p = 0.01) and negatively in HFrEF (r = -0.51, p = 0.04). miR-423-5p overexpression, previously associated HF mortality, was inversely associated with LVEF (r = - 0.29, p = 0.04) and intracellular water lifetime (τic) (r = -0.45, p < 0.05) in both HF groups, and with NT-proBNP in HFpEF (r = -0.63, p < 0.01). Conclusions: miRNA expression profiles differed between HF phenotypes. The differential expression and association of miR-128a-3p with ECV may reflect the distinct vascular, interstitial, and cellular etiologies of HF phenotypes.

2.
BMC Cardiovasc Disord ; 24(1): 94, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326736

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) frequently co-exist. There is a limited understanding on whether this coexistence is associated with distinct alterations in myocardial remodelling and mechanics. We aimed to determine if patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) represent a distinct phenotype. METHODS: In this secondary analysis of adults with HFpEF (NCT03050593), participants were comprehensively phenotyped with stress cardiac MRI, echocardiography and plasma fibroinflammatory biomarkers, and were followed for the composite endpoint (HF hospitalisation or death) at a median of 8.5 years. Those with AF were compared to sinus rhythm (SR) and unsupervised cluster analysis was performed to explore possible phenotypes. RESULTS: 136 subjects were included (SR = 75, AF = 61). The AF group was older (76 ± 8 vs. 70 ± 10 years) with less diabetes (36% vs. 61%) compared to the SR group and had higher left atrial (LA) volumes (61 ± 30 vs. 39 ± 15 mL/m2, p < 0.001), lower LA ejection fraction (EF) (31 ± 15 vs. 51 ± 12%, p < 0.001), worse left ventricular (LV) systolic function (LVEF 63 ± 8 vs. 68 ± 8%, p = 0.002; global longitudinal strain 13.6 ± 2.9 vs. 14.7 ± 2.4%, p = 0.003) but higher LV peak early diastolic strain rates (0.73 ± 0.28 vs. 0.53 ± 0.17 1/s, p < 0.001). The AF group had higher levels of syndecan-1, matrix metalloproteinase-2, proBNP, angiopoietin-2 and pentraxin-3, but lower level of interleukin-8. No difference in clinical outcomes was observed between the groups. Three distinct clusters were identified with the poorest outcomes (Log-rank p = 0.029) in cluster 2 (hypertensive and fibroinflammatory) which had equal representation of SR and AF. CONCLUSIONS: Presence of AF in HFpEF is associated with cardiac structural and functional changes together with altered expression of several fibro-inflammatory biomarkers. Distinct phenotypes exist in HFpEF which may have differing clinical outcomes.


Subject(s)
Atrial Fibrillation , Heart Failure , Multiparametric Magnetic Resonance Imaging , Humans , Adult , Stroke Volume , Matrix Metalloproteinase 2 , Ventricular Function, Left , Biomarkers , Phenotype , Prognosis
3.
Eur Heart J Cardiovasc Imaging ; 25(5): 687-697, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38193678

ABSTRACT

AIMS: In systemic light-chain (AL) amyloidosis, quantification of right ventricular (RV) amyloid burden has been limited and the pathogenesis of RV dysfunction is poorly understood. Using 18F-florbetapir positron emission tomography/computed tomography (PET/CT), we aimed to quantify RV amyloid; correlate RV amyloid with RV structure and function; determine the independent contributions of RV, left ventricular (LV), and lung amyloid to RV function; and associate RV amyloid with major adverse cardiac events (MACE: death, heart failure hospitalization, cardiac transplantation). METHODS AND RESULTS: We prospectively enrolled 106 participants with AL amyloidosis (median age 62 years, 55% males) who underwent 18F-florbetapir PET/CT, magnetic resonance imaging, and echocardiography. 18F-florbetapir PET/CT identified RV amyloid in 63% of those with and 40% of those without cardiac involvement by conventional criteria. RV amyloid burden correlated with RV ejection fraction (EF), RV free wall longitudinal strain (FWLS), RV wall thickness, RV mass index, N-terminal pro-brain natriuretic peptide, troponin T, LV amyloid, and lung amyloid (each P < 0.001). In multivariable analysis, RV amyloid burden, but not LV or lung amyloid burden, predicted RV dysfunction (EF P = 0.014; FWLS P < 0.001). During a median follow-up of 28 months, RV amyloid burden predicted MACE (P < 0.001). CONCLUSION: This study shows for the first time that 18F-florbetapir PET/CT identifies early RV amyloid in systemic AL amyloidosis prior to alterations in RV structure and function. Increasing RV amyloid on 18F-florbetapir PET/CT is associated with worse RV structure and function, predicts RV dysfunction, and predicts MACE. These results imply a central role for RV amyloid in the pathogenesis of RV dysfunction.


Subject(s)
Aniline Compounds , Ethylene Glycols , Positron Emission Tomography Computed Tomography , Ventricular Dysfunction, Right , Humans , Male , Female , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Ventricular Dysfunction, Right/diagnostic imaging , Aged , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Immunoglobulin Light-chain Amyloidosis/complications , Radiopharmaceuticals , Heart Ventricles/diagnostic imaging
4.
Int J Cardiol ; 399: 131698, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38184150

ABSTRACT

BACKGROUND: Omega-3 polyunsaturated fatty acids (O3-FA) have been shown to reduce inflammation and adverse cardiac remodeling after acute myocardial infarction (AMI). However, the impact of O3-FA on long-term clinical outcomes remains uncertain. AIMS: To investigate the impact of O3-FA on adverse cardiac events in long-term follow up post AMI in a pilot-study. METHODS: Consecutive patients with AMI were randomized 1:1 to receive 6 months of O3-FA (4 g/daily) or placebo in the prospective, multicenter OMEGA-REMODEL trial. Primary endpoint was a composite of major adverse cardiovascular events (MACE) encompassing all-cause death, heart failure hospitalizations, recurrent acute coronary syndrome, and late coronary artery bypass graft (CABG). RESULTS: A total of 358 patients (62.8% male; 48.1 ± 16.1 years) were followed for a median of 6.6 (IQR: 5.0-9.1) years. Among those receiving O3-FA (n = 180), MACE occurred in 65 (36.1%) compared to 62 (34.8%) of 178 assigned to placebo. By intention-to-treat analysis, O3-FA treatment assignment did not reduce MACE (HR = 1.014; 95%CI = 0.716-1.436; p = 0.938), or its individual components. However, patients with a positive response to O3-FA treatment (n = 43), defined as an increase in the red blood cell omega-3 index (O3I) ≥5% after 6 months of treatment, had lower annualized MACE rates compared to those without (2.9% (95%CI = 1.2-5.1) vs 7.1% (95%CI = 5.7-8.9); p = 0.001). This treatment benefit persisted after adjustment for baseline characteristics (HRadjusted = 0.460; 95%CI = 0.218-0.970; p = 0.041). CONCLUSION: In long-term follow-up of the OMEGA-REMODEL randomized trial, O3-FA did not reduce MACE after AMI by intention to treat principle, however, patients who achieved a ≥ 5% increase of O3I subsequent to treatment had favorable outcomes.


Subject(s)
Acute Coronary Syndrome , Fatty Acids, Omega-3 , Myocardial Infarction , Female , Humans , Male , Acute Coronary Syndrome/drug therapy , Eicosapentaenoic Acid , Myocardial Infarction/drug therapy , Myocardial Infarction/chemically induced , Pilot Projects , Prospective Studies , Treatment Outcome , Adult , Middle Aged
5.
JAMA Cardiol ; 9(2): 189-194, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38090987

ABSTRACT

Importance: The risk for atherosclerotic disease is increased 1.5- to 2.0-fold among persons with HIV (PWH). Increased activation of the renin-angiotensin-aldosterone system may contribute to increased arterial inflammation in this population. Objective: To determine the effects of eplerenone on arterial inflammation among well-treated PWH without known cardiovascular disease (CVD). Design, Setting, and Participants: Well-treated PWH who participated in the double-blinded, placebo-controlled, Mineralocorticoid Receptor Antagonism for Cardiovascular Health in HIV (MIRACLE HIV) study between February 2017 and March 2022 assessing the effects of eplerenone on myocardial perfusion were invited to participate in the Mineralocorticoid Receptor Antagonism By Eplerenone to Lower Arterial Inflammation in HIV (MIRABELLA) substudy if there was no current statin use. Participants were enrolled in the MIRABELLA study and underwent additional 18F-fludeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) imaging of the aorta and carotid arteries to assess arterial inflammation over 12 months of treatment with eplerenone vs placebo. Interventions: Eplerenone, 50 mg, twice a day vs identical placebo. Main Outcomes and Measures: The primary outcome was change in target to background ratio (TBR), a measure of arterial wall inflammation, in the index vessel after 12 months of treatment. The index vessel was defined as the vessel (aorta, left carotid artery, or right carotid artery) with the highest TBR at baseline in each participant. Results: A total of 26 participants (mean [SD] age, 54 [7] years; 18 male [69%]) were enrolled in the study. Treatment groups (eplerenone, 13 vs placebo, 13) were of similar age, sex, and body mass index. Eplerenone was associated with a reduction in TBR of the primary end point, the index vessel (eplerenone vs placebo: model treatment effect, -0.31; 95% CI, -0.50 to -0.11; P = .006; percentage change, -12.4% [IQR, -21.9% to -2.6%] vs 5.1% [IQR, -1.6% to 11.0%]; P = .003). We further observed a significant reduction of the TBR of the most diseased segment (MDS) of the index vessel (eplerenone vs placebo: -19.1% [IQR, -27.0% to -11.9%] vs 6.8% [IQR, -9.1% to 12.1%]; P = .007). A similar result was seen assessing the index vessel of the carotids (eplerenone vs placebo: -10.0% [IQR, -21.8% to 3.6%] vs 9.7% [IQR, -9.8% to 15.9%]; P = .046). Reduction in the TBR of MDS of the index vessel on 18F-FDG PET/CT correlated with improvement in the stress myocardial blood flow on cardiac magnetic resonance imaging (Spearman ρ = -0.67; P = .01). Conclusion and Relevance: In this small randomized clinical trial, eplerenone was associated with reduction in arterial inflammation among well-treated PWH without known CVD. In addition, reductions in arterial inflammation as measured by 18F-FDG PET/CT were related to improvements in stress myocardial perfusion. Further larger studies should explore whether eplerenone is a potential treatment strategy for inflammatory-mediated CVD in PWH. Trial Registration: ClinicalTrials.gov Identifier: NCT02740179.


Subject(s)
Arteritis , Atherosclerosis , HIV Infections , Humans , Male , Middle Aged , Atherosclerosis/drug therapy , Atherosclerosis/complications , Eplerenone/therapeutic use , Fluorodeoxyglucose F18 , HIV Infections/complications , HIV Infections/drug therapy , Mineralocorticoid Receptor Antagonists/therapeutic use , Positron Emission Tomography Computed Tomography , Receptors, Mineralocorticoid/therapeutic use , Treatment Outcome , Female
7.
J Nucl Med ; 64(Suppl 2): 49S-58S, 2023 11.
Article in English | MEDLINE | ID: mdl-37918842

ABSTRACT

Myocardial fibrosis is a major contributor to the development and progression of heart failure. Significant progress in the understanding of its pathobiology has led to the introduction and preclinical testing of multiple highly specific antifibrotic therapies. Because the mechanisms of fibrosis are highly dynamic, and because the involved cell populations are heterogeneous and plastic, there is increasing emphasis that any therapy directed specifically against myocardial fibrosis will require personalization and guidance by equally specific diagnostic testing for successful clinical translation. Noninvasive imaging techniques have undergone significant progress and provide increasingly specific information about the quantity, quality, and activity of myocardial fibrosis. Cardiac MRI can precisely map the extracellular space of the myocardium, whereas nuclear imaging characterizes activated fibroblasts and immune cells as the cellular components contributing to fibrosis. Existing techniques may be used in complementarity to provide the imaging biomarkers needed for the success of novel targeted therapies. This review provides a road map on how progress in basic fibrosis research, antifibrotic drug development, and high-end noninvasive imaging may come together to facilitate the success of fibrosis-directed cardiovascular medicine.


Subject(s)
Cardiomyopathies , Heart , Humans , Myocardium/pathology , Fibrosis , Fibroblasts/pathology , Molecular Imaging
8.
medRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873250

ABSTRACT

Aims: In systemic light-chain (AL) amyloidosis, cardiac involvement portends poor prognosis. Using myocardial characteristics on magnetic resonance imaging (MRI), this study aimed to detect early myocardial alterations, to analyze temporal changes with plasma cell therapy, and to predict risk of major adverse cardiac events (MACE) in AL amyloidosis. Methods and Results: Participants with recently diagnosed AL amyloidosis were prospectively enrolled. Presence of AL cardiomyopathy (AL-CMP vs. AL-non-CMP) was determined by abnormal cardiac biomarkers. MRI was performed at baseline and 6 months, with 12-month imaging in AL-CMP cohort. MACE was defined as all-cause death, heart failure hospitalization, or cardiac transplantation. Mayo AL stage was based on troponin T, NT-proBNP, and difference in free light chains. The study cohort included 80 participants (median age 62 years, 58% males). Median left ventricular extracellular volume (ECV) was significantly higher in AL-CMP (53% vs. 30%, p<0.001). ECV was abnormal (>32%) in all AL-CMP and in 47% of AL-non-CMP. ECV tended to increase at 6 months and decreased significantly from 6 to 12 months in AL-CMP (median -3%, p=0.011). ECV was strongly associated with MACE (p<0.001), and improved MACE prediction when added to Mayo AL stage (p=0.002). ECV≤32% identified a cohort without MACE, while ECV>48% identified a cohort with 74% MACE. Conclusions: In AL amyloidosis, ECV detects subclinical cardiomyopathy. ECV tends to increase from baseline to 6 months and decreases significantly from 6 and 12 months of plasma cell therapy in AL-CMP. ECV provides excellent risk stratification and offers additional prognostic performance over Mayo AL stage.

9.
medRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745589

ABSTRACT

Background: Myocardial immunoglobulin light-chain (AL) amyloid deposits trigger heart failure, cardiomyocyte stretch and myocardial injury, leading to adverse cardiac outcomes. Positron emission tomography/computed tomography (PET/CT) with 18 F-florbetapir, a novel amyloid-targeting radiotracer, can quantify left ventricular (LV) amyloid burden, but its prognostic value is not known. Therefore, we aimed to evaluate the prognostic value of LV amyloid burden quantified by 18 F-florbetapir PET/CT and to identify mechanistic pathways mediating its association with outcomes. Methods: Eighty-one participants with newly-diagnosed systemic AL amyloidosis were prospectively enrolled and underwent 18 F-florbetapir PET/CT. LV amyloid burden was quantified using 18 F-florbetapir LV percent injected dose (%ID). Mayo AL stage was determined using troponin T, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and difference between involved and uninvolved free light chain levels. Major adverse cardiac events (MACE) were defined as all-cause death, heart failure hospitalization, or cardiac transplantation within 12 months. Results: Among participants (median age 61 years, 57% males), 36% experienced MACE. Incidence of MACE increased across tertiles of LV amyloid burden from 7% to 63% (p<0.001). LV amyloid burden was significantly associated with MACE in univariable analysis (hazard ratio 1.45, 95% confidence interval 1.15-1.82, p=0.002). However, this association became non-significant in multivariable analyses adjusted for Mayo AL stage. Mediation analysis showed that the association between 18 F-florbetapir LV %ID and MACE was primarily mediated by NT-proBNP (p<0.001), a marker of cardiomyocyte stretch and component of Mayo AL stage. Conclusion: In this first study to link cardiac 18 F-florbetapir uptake to subsequent outcomes, LV amyloid burden estimated by LV %ID predicted MACE in AL amyloidosis. But this effect was not independent of Mayo AL stage. LV amyloid burden was associated with MACE primarily via NT-pro-BNP, a marker of cardiomyocyte stretch and component of Mayo AL stage. These findings provide novel insights into the mechanism through which myocardial AL amyloid leads to MACE. Clinical Perspective: In systemic light-chain (AL) amyloidosis, cardiac involvement is the key determinant of adverse outcomes. Usually, prognosis is based on the Mayo AL stage, determined by troponin T, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and the difference between involved and uninvolved immunoglobulin free light chain levels (dFLC). Cardiac amyloid burden is not considered in this staging. In the present study, we used the amyloid-specific radiotracer 18 F-florbetapir to quantify left ventricular (LV) amyloid burden in 81 participants with newly-diagnosed AL amyloidosis and evaluated its prognostic value on major adverse outcomes (MACE: all-cause death, heart failure hospitalization, or cardiac transplantation within 12 months). We found that higher LV amyloid burden by 18 F-florbetapir positron emission tomography/computed tomography (PET/CT) was strongly associated with MACE. However, this association became non-significant after adjustment for the Mayo AL stage. Mediation analysis offered novel pathophysiological insights, implying that LV amyloid burden leads to MACE predominantly through cardiomyocyte stretch and light chain toxicity (by NT-proBNP), rather than through myocardial injury (by troponin T), also considering the severity of plasma cell dyscrasia (by dFLC). This mediation by NT-proBNP may explain why the association with outcomes was non-significant with adjustment for Mayo AL stage. Together, these results establish quantitative 18 F-florbetapir PET/CT as a valid method to predict adverse outcomes in AL amyloidosis. These results support the use of 18 F-florbetapir PET/CT to measure the effects of novel fibril-depleting therapies, in addition to plasma cell therapy, to improve outcomes in systemic AL amyloidosis.

10.
Front Cardiovasc Med ; 10: 1226481, 2023.
Article in English | MEDLINE | ID: mdl-37680567

ABSTRACT

Introduction: Data on patients hospitalized with acute heart failure in Brazil scarce. Methods: We performed a cross-sectional, retrospective, records-based study using data retrieved from a large public database of heart failure admissions to any hospital from the Brazilian National Public Health System (SUS) (SUS Hospital Information System [SIHSUS] registry) to determine the in-hospital all-cause mortality rate, in-hospital renal replacement therapy rate and its association with outcome. Results: In total, 910,128 hospitalizations due to heart failure were identified in the SIHSUS registry between April 2017 and August 2021, of which 106,383 (11.7%) resulted in in-hospital death. Renal replacement therapy (required by 8,179 non-survivors [7.7%] and 11,496 survivors [1.4%, p < 0.001]) was associated with a 56% increase in the risk of death in the univariate regression model (HR 1.56, 95% CI 1.52 -1.59), a more than threefold increase of the duration of hospitalization, and a 45% or greater increase of cost per day. All forms of renal replacement therapy remained independently associated with in-hospital mortality in multivariable analysis (intermittent hemodialysis: HR 1.64, 95% CI 1.60 -1.69; continuous hemodialysis: HR 1.52, 95% CI 1.42 -1.63; peritoneal dialysis: HR 1.47, 95% CI 1.20 -1.88). Discussion: The in-hospital mortality rate of 11.7% observed among patients with acute heart failure admitted to Brazilian public hospitals was alarmingly high, exceeding that of patients admitted to North American and European institutions. This is the first report to quantify the rate of renal replacement therapy in patients hospitalized with acute heart failure in Brazil.

11.
Open Heart ; 10(2)2023 08.
Article in English | MEDLINE | ID: mdl-37586847

ABSTRACT

OBJECTIVE: To characterise cardiac remodelling, exercise capacity and fibroinflammatory biomarkers in patients with aortic stenosis (AS) with and without diabetes, and assess the impact of diabetes on outcomes. METHODS: Patients with moderate or severe AS with and without diabetes underwent echocardiography, stress cardiovascular magnetic resonance (CMR), cardiopulmonary exercise testing and plasma biomarker analysis. Primary endpoint for survival analysis was a composite of cardiovascular mortality, myocardial infarction, hospitalisation with heart failure, syncope or arrhythmia. Secondary endpoint was all-cause death. RESULTS: Diabetes (n=56) and non-diabetes groups (n=198) were well matched for age, sex, ethnicity, blood pressure and severity of AS. The diabetes group had higher body mass index, lower estimated glomerular filtration rate and higher rates of hypertension, hyperlipidaemia and symptoms of AS. Biventricular volumes and systolic function were similar, but the diabetes group had higher extracellular volume fraction (25.9%±3.1% vs 24.8%±2.4%, p=0.020), lower myocardial perfusion reserve (2.02±0.75 vs 2.34±0.68, p=0.046) and lower percentage predicted peak oxygen consumption (68%±21% vs 77%±17%, p=0.002) compared with the non-diabetes group. Higher levels of renin (log10renin: 3.27±0.59 vs 2.82±0.69 pg/mL, p<0.001) were found in diabetes. Multivariable Cox regression analysis showed diabetes was not associated with cardiovascular outcomes, but was independently associated with all-cause mortality (HR 2.04, 95% CI 1.05 to 4.00; p=0.037). CONCLUSIONS: In patients with moderate-to-severe AS, diabetes is associated with reduced exercise capacity, increased diffuse myocardial fibrosis and microvascular dysfunction, but not cardiovascular events despite a small increase in mortality.


Subject(s)
Aortic Valve Stenosis , Diabetes Mellitus , Humans , Exercise Tolerance , Renin , Aortic Valve Stenosis/diagnostic imaging , Heart
12.
JAMA ; 330(6): 528-536, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37552303

ABSTRACT

Importance: Anthracyclines treat a broad range of cancers. Basic and retrospective clinical data have suggested that use of atorvastatin may be associated with a reduction in cardiac dysfunction due to anthracycline use. Objective: To test whether atorvastatin is associated with a reduction in the proportion of patients with lymphoma receiving anthracyclines who develop cardiac dysfunction. Design, Setting, and Participants: Double-blind randomized clinical trial conducted at 9 academic medical centers in the US and Canada among 300 patients with lymphoma who were scheduled to receive anthracycline-based chemotherapy. Enrollment occurred between January 25, 2017, and September 10, 2021, with final follow-up on October 10, 2022. Interventions: Participants were randomized to receive atorvastatin, 40 mg/d (n = 150), or placebo (n = 150) for 12 months. Main Outcomes and Measures: The primary outcome was the proportion of participants with an absolute decline in left ventricular ejection fraction (LVEF) of ≥10% from prior to chemotherapy to a final value of <55% over 12 months. A secondary outcome was the proportion of participants with an absolute decline in LVEF of ≥5% from prior to chemotherapy to a final value of <55% over 12 months. Results: Of the 300 participants randomized (mean age, 50 [SD, 17] years; 142 women [47%]), 286 (95%) completed the trial. Among the entire cohort, the baseline mean LVEF was 63% (SD, 4.6%) and the follow-up LVEF was 58% (SD, 5.7%). Study drug adherence was noted in 91% of participants. At 12-month follow-up, 46 (15%) had a decline in LVEF of 10% or greater from prior to chemotherapy to a final value of less than 55%. The incidence of the primary end point was 9% (13/150) in the atorvastatin group and 22% (33/150) in the placebo group (P = .002). The odds of a 10% or greater decline in LVEF to a final value of less than 55% after anthracycline treatment was almost 3 times greater for participants randomized to placebo compared with those randomized to atorvastatin (odds ratio, 2.9; 95% CI, 1.4-6.4). Compared with placebo, atorvastatin also reduced the incidence of the secondary end point (13% vs 29%; P = .001). There were 13 adjudicated heart failure events (4%) over 24 months of follow-up. There was no difference in the rates of incident heart failure between study groups (3% with atorvastatin, 6% with placebo; P = .26). The number of serious related adverse events was low and similar between groups. Conclusions and Relevance: Among patients with lymphoma treated with anthracycline-based chemotherapy, atorvastatin reduced the incidence of cardiac dysfunction. This finding may support the use of atorvastatin in patients with lymphoma at high risk of cardiac dysfunction due to anthracycline use. Trial Registration: ClinicalTrials.gov Identifier: NCT02943590.


Subject(s)
Anthracyclines , Antibiotics, Antineoplastic , Atorvastatin , Cardiovascular Agents , Heart Diseases , Lymphoma , Female , Humans , Middle Aged , Anthracyclines/adverse effects , Anthracyclines/therapeutic use , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/therapeutic use , Atorvastatin/therapeutic use , Double-Blind Method , Heart Failure/etiology , Heart Failure/physiopathology , Heart Failure/prevention & control , Retrospective Studies , Stroke Volume , Ventricular Function, Left , Cardiovascular Agents/therapeutic use , Lymphoma/drug therapy , Heart Diseases/chemically induced , Heart Diseases/physiopathology , Heart Diseases/prevention & control , Follow-Up Studies , Male , Adult , Aged
13.
JACC Cardiovasc Imaging ; 16(12): 1536-1549, 2023 12.
Article in English | MEDLINE | ID: mdl-37318392

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) characterizes myocardial substrate relevant to sudden cardiac death (SCD). However, its clinical value in patients presenting with ventricular arrhythmias is still being defined. OBJECTIVES: The authors sought to examine the diagnostic and prognostic value of multiparametric CMR in a cohort of consecutive patients referred for assessment of ventricular arrhythmias. METHODS: Consecutive patients undergoing CMR for nonsustained ventricular tachycardia (NSVT) (n = 345) or sustained ventricular tachycardia (VT)/aborted SCD (n = 297) were followed over a median of 4.4 years. Major adverse cardiac events included death, recurrent VT/ventricular fibrillation requiring therapy, and hospitalization for congestive heart failure. RESULTS: Of the 642 patients, 256 were women (40%), mean age was 54 ± 15 years, and median left ventricular ejection fraction was 58% (IQR: 49%-63%). A structurally abnormal heart by CMR assessment was detected in 40% of patients with NSVT and 66% in those with VT/SCD (P < 0.001). CMR assessment yielded a diagnostic change in 27% of NSVT patients vs 41% of those with VT/SCD (P < 0.001). During follow-up, 51 patients (15%) with NSVT and 104 patients (35%) with VT/SCD experienced major adverse cardiac events (MACE). An abnormal CMR was associated with a higher annual rate for MACE for both NSVT (0.7% vs 7.7%; P < 0.001) and VT/SCD (3.8% vs 13.3%; P < 0.001) patients. In a multivariate model including left ventricular ejection fraction, an abnormal CMR remained strongly associated with MACE in NSVT (HR: 5.23 [95% CI: 2.28-12.0]; P < 0.001) and VT/SCD (HR: 1.88 [95% CI: 1.07-3.30]; P = 0.03). Adding CMR assessment to the multivariable model for MACE yielded a significant improvement in the integrated discrimination improvement and an improvement in the C-statistic in the NSVT cohort. CONCLUSIONS: In patients presenting with ventricular arrhythmias, multiparametric CMR assessment provides diagnostic clarification and effective risk stratification beyond current standard of care.


Subject(s)
Contrast Media , Tachycardia, Ventricular , Humans , Female , Adult , Middle Aged , Aged , Male , Stroke Volume , Prognosis , Ventricular Function, Left , Risk Factors , Predictive Value of Tests , Arrhythmias, Cardiac , Tachycardia, Ventricular/diagnosis , Death, Sudden, Cardiac/etiology , Magnetic Resonance Spectroscopy
14.
Clin Infect Dis ; 77(8): 1166-1175, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37243345

ABSTRACT

BACKGROUND: Increased renin angiotensin aldosterone system (RAAS) activity may contribute to excess cardiovascular disease in people with HIV (PWH). We investigated how RAAS blockade may improve myocardial perfusion, injury, and function among well-treated PWH. METHODS: Forty PWH, on stable ART, without known heart disease were randomized to eplerenone 50 mg PO BID (n = 20) or identical placebo (n = 20) for 12 months. The primary endpoints were (1) myocardial perfusion assessed by coronary flow reserve (CFR) on cardiac PET or stress myocardial blood flow (sMBF) on cardiac MRI or (2) myocardial inflammation by extracellular mass index (ECMi) on cardiac MRI. RESULTS: Beneficial effects on myocardial perfusion were seen for sMBF by cardiac MRI (mean [SD]: 0.09 [0.56] vs -0.53 [0.68] mL/min/g; P = .03) but not CFR by cardiac PET (0.01 [0.64] vs -0.07 [0.48]; P = .72, eplerenone vs placebo). Eplerenone improved parameters of myocardial function on cardiac MRI including left ventricular end diastolic volume (-13 [28] vs 10 [26] mL; P = .03) and global circumferential strain (GCS; median [interquartile range 25th-75th]: -1.3% [-2.9%-1.0%] vs 2.3% [-0.4%-4.1%]; P = .03), eplerenone versus placebo respectively. On cardiac MRI, improvement in sMBF related to improvement in global circumferential strain (ρ = -0.65, P = .057) among those treated with eplerenone. Selecting for those with impaired myocardial perfusion (CFR <2.5 and/or sMBF <1.8), there was a treatment effect of eplerenone versus placebo to improve CFR (0.28 [0.27] vs -0.05 [0.36]; P = .04). Eplerenone prevented a small increase in troponin (0.00 [-0.13-0.00] vs 0.00 [0.00-0.74] ng/L; P = .03) without effects on ECMi (0.9 [-2.3-4.3] vs -0.7 [-2.2--0.1] g/m2; P = .38). CD4+ T-cell count (127 [-38-286] vs -6 [-168-53] cells/µL; P = .02) increased in the eplerenone- versus placebo-treated groups. CONCLUSIONS: RAAS blockade with eplerenone benefitted key indices and prevented worsening of myocardial perfusion, injury, and function among PWH with subclinical cardiac disease when compared with placebo. CLINICAL TRIALS REGISTRATION: NCT02740179 (https://clinicaltrials.gov/ct2/show/NCT02740179?term=NCT02740179&draw=2&rank=1).


Subject(s)
HIV Infections , Spironolactone , Humans , Eplerenone/pharmacology , HIV , HIV Infections/complications , HIV Infections/drug therapy , Mineralocorticoid Receptor Antagonists/pharmacology , Perfusion , Spironolactone/pharmacology
15.
J Am Heart Assoc ; 12(6): e027801, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36892052

ABSTRACT

Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.


Subject(s)
COVID-19 , Contrast Media , Child , Humans , Aged , Young Adult , Adult , Middle Aged , Gadolinium , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
16.
J Thorac Imaging ; 38(4): 235-246, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36917509

ABSTRACT

Ischemic heart disease continues to be the leading cause of death and disability worldwide. For the diagnosis of ischemic heart disease, some form of cardiac stress test involving exercise or pharmacological stimulation continues to play an important role, despite advances within modalities like computer tomography for the noninvasive detection and characterization of epicardial coronary lesions. Among noninvasive stress imaging tests, cardiac magnetic resonance (CMR) combines several capabilities that are highly relevant for the diagnosis of ischemic heart disease: assessment of wall motion abnormalities, myocardial perfusion imaging, and depiction of replacement and interstitial fibrosis markers by late gadolinium enhancement techniques and T1 mapping. On top of these qualities, CMR is also well tolerated and safe in most clinical scenarios, including in the presence of cardiovascular implantable devices, while in the presence of renal disease, gadolinium-based contrast should only be used according to guidelines. CMR also offers outstanding viability assessment and prognostication of cardiovascular events. The last 2019 European Society of Cardiology guidelines for chronic coronary syndromes has positioned stress CMR as a class I noninvasive imaging technique for the diagnosis of coronary artery disease in symptomatic patients. In the present review, we present the current state-of-the-art assessment of myocardial ischemia by stress perfusion CMR, highlighting its advantages and current shortcomings. We discuss the safety, clinical, and cost-effectiveness aspects of gadolinium-based CMR-perfusion imaging for ischemic heart disease assessment.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Perfusion Imaging , Humans , Contrast Media , Gadolinium , Myocardial Ischemia/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Magnetic Resonance Imaging , Myocardial Perfusion Imaging/methods , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests
17.
JACC Cardiovasc Imaging ; 16(4): 478-491, 2023 04.
Article in English | MEDLINE | ID: mdl-36648040

ABSTRACT

BACKGROUND: Abnormal global longitudinal strain (GLS) has been independently associated with adverse cardiac outcomes in both obstructive and nonobstructive hypertrophic cardiomyopathy. OBJECTIVES: The goal of this study was to understand predictors of abnormal GLS from baseline data from the National Heart, Lung, and Blood Institute (NHLBI) Hypertrophic Cardiomyopathy Registry (HCMR). METHODS: The study evaluated comprehensive 3-dimensional left ventricular myocardial strain from cine cardiac magnetic resonance in 2,311 patients from HCMR using in-house validated feature-tracking software. These data were correlated with other imaging markers, serum biomarkers, and demographic variables. RESULTS: Abnormal median GLS (> -11.0%) was associated with higher left ventricular (LV) mass index (93.8 ± 29.2 g/m2 vs 75.1 ± 19.7 g/m2; P < 0.0001) and maximal wall thickness (21.7 ± 5.2 mm vs 19.3 ± 4.1 mm; P < 0.0001), lower left (62% ± 9% vs 66% ± 7%; P < 0.0001) and right (68% ± 11% vs 69% ± 10%; P < 0.01) ventricular ejection fractions, lower left atrial emptying functions (P < 0.0001 for all), and higher presence and myocardial extent of late gadolinium enhancement (6 SD and visual quantification; P < 0.0001 for both). Elastic net regression showed that adjusted predictors of GLS included female sex, Black race, history of syncope, presence of systolic anterior motion of the mitral valve, reverse curvature and apical morphologies, LV ejection fraction, LV mass index, and both presence/extent of late gadolinium enhancement and baseline N-terminal pro-B-type natriuretic peptide and troponin levels. CONCLUSIONS: Abnormal strain in hypertrophic cardiomyopathy is associated with other imaging and serum biomarkers of increased risk. Further follow-up of the HCMR cohort is needed to understand the independent relationship between LV strain and adverse cardiac outcomes in hypertrophic cardiomyopathy.


Subject(s)
Cardiomyopathy, Hypertrophic , Contrast Media , United States , Humans , Female , Gadolinium , National Heart, Lung, and Blood Institute (U.S.) , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Ventricular Function, Left , Stroke Volume , Biomarkers , Registries
18.
AIDS ; 37(2): 305-310, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36541642

ABSTRACT

OBJECTIVE: Women with HIV (WWH) have heightened heart failure risk. Plasma OPN (osteopontin) is a powerful predictor of heart failure outcomes in the general population. Limited data exist on relationships between plasma OPN and surrogates of HIV-associated heart failure risk. DESIGN: Prospective, cross-sectional. METHODS: We analyzed relationships between plasma OPN and cardiac structure/function (assessed using cardiovascular magnetic resonance imaging) and immune activation (biomarkers and flow cytometry) among 20 WWH and 14 women without HIV (WWOH). RESULTS: Plasma OPN did not differ between groups. Among WWH, plasma OPN related directly to the markers of cardiac fibrosis, growth differentiation factor-15 (ρ = 0.51, P = 0.02) and soluble interleukin 1 receptor-like 1 (ρ = 0.45, P = 0.0459). Among WWH (but not among WWOH or the whole group), plasma OPN related directly to both myocardial fibrosis (ρ = 0.49, P = 0.03) and myocardial steatosis (ρ = 0.46, P = 0.0487). Among the whole group and WWH (and not among WWOH), plasma OPN related directly to the surface expression of C-X3-C motif chemokine receptor 1 (CX3CR1) on nonclassical (CD14-CD16+) monocytes (whole group: ρ = 0.36, P = 0.04; WWH: ρ = 0.46, P = 0.04). Further, among WWH and WWOH (and not among the whole group), plasma OPN related directly to the surface expression of CC motif chemokine receptor 2 (CCR2) on inflammatory (CD14+CD16+) monocytes (WWH: ρ = 0.54, P = 0.01; WWOH: ρ = 0.60, P = 0.03), and in WWH, this held even after controlling for HIV-specific parameters. CONCLUSION: Among WWH, plasma OPN, a powerful predictor of heart failure outcomes, related to myocardial fibrosis and steatosis and the expression of CCR2 and CX3CR1 on select monocyte subpopulations. OPN may play a role in heart failure pathogenesis among WWH. CLINICALTRIALSGOV REGISTRATION: NCT02874703.


Subject(s)
HIV Infections , Heart Failure , Humans , Female , Osteopontin/metabolism , Cross-Sectional Studies , Prospective Studies , HIV Infections/complications , Fibrosis , Receptors, Chemokine , Monocytes/metabolism
19.
Circ Cardiovasc Imaging ; 16(1): e014106, 2023 01.
Article in English | MEDLINE | ID: mdl-36541203

ABSTRACT

The global pandemic of COVID-19 caused by infection with SARS-CoV-2 is now entering its fourth year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. Although pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play) following resolution of infection. A variety of different testing combinations that leverage ECG, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance imaging have been proposed and implemented to mitigate risk. Cardiovascular magnetic resonance in particular affords high sensitivity for myocarditis but has been employed and interpreted nonuniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to return to play. This consensus document synthesizes available evidence to contextualize the appropriate utilization of cardiovascular magnetic resonance in the return to play assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.


Subject(s)
COVID-19 , Radiology , Sports , Humans , United States/epidemiology , SARS-CoV-2 , Consensus , American Heart Association , Leadership , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
20.
J Cardiovasc Magn Reson ; 24(1): 73, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36539786

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory suyndrome coronavirus 2 (SARS-CoV-2) is now entering its 4th year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. While pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play, RTP) following resolution of infection. A variety of different testing combinations that leverage the electrocardiogram, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance (CMR) imaging have been proposed and implemented to mitigate risk. CMR in particular affords high sensitivity for myocarditis but has been employed and interpreted non-uniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to RTP. This consensus document synthesizes available evidence to contextualize the appropriate utilization of CMR in the RTP assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.


Subject(s)
COVID-19 , Myocarditis , Sports , Humans , American Heart Association , Consensus , Leadership , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Predictive Value of Tests , SARS-CoV-2 , United States , Societies, Medical
SELECTION OF CITATIONS
SEARCH DETAIL
...