Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
J Phys Chem Lett ; : 5625-5632, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758534

ABSTRACT

A new method to quantitatively analyze heterogeneous distributions of local proton densities around paramagnetic centers in unstructured and weakly structured biomacromolecules and soft matter is introduced, and its feasibility is demonstrated on aqueous solutions of stochastically spin-labeled polysaccharides. This method is based on the pulse EPR experiment ih-RIDME (intermolecular hyperfine relaxation-induced dipolar modulation enhancement). Global analysis of a series of RIDME traces allows for a mathematically stable transformation of the time-domain data to the distribution of local proton concentrations. Two pulse sequences are proposed and tested, which combine the ih-RIDME block and the double-electron-electron resonance (DEER) experiment. Such experiments can be potentially used to correlate the local proton concentration with the macromolecular chain conformation. We anticipate an application of this approach in studies of intrinsically disordered proteins, biomolecular aggregates, and biomolecular condensates.

2.
Phys Chem Chem Phys ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38751211

ABSTRACT

Tunneling of methyl rotors coupled to an electron spin causes magnetic field independent electron spin echo envelope modulation (ESEEM) at low temperatures. For nitroxides containing alkyl substituents, we observe this effect as a contribution at the beginning of the Hahn echo decay signal occurring on a faster time scale than the matrix-induced decoherence. The tunneling ESEEM contribution includes information on the local environment of the methyl rotors, which manifests as a distribution of rotation barriers P(V3) when measuring the paramagnetic species in a glassy matrix. Here, we investigate the differences in tunneling behaviour of geminal methyl and ethyl group rotors in nitroxides while exploring different levels of theory in our previously introduced methyl quantum rotor (MQR) model. Moreover, we extend the MQR model to analyze the tunneling ESEEM originating from two different rotor types coupled to the same electron spin. We find that ethyl groups in nitroxides give rise to stronger tunneling ESEEM contributions than methyl groups because the difference between hyperfine couplings of their methyl protons better matches the tunneling frequency. The methyl rotors of both ethyl and propyl groups exhibit distributions at lower rotation barriers compared to geminal methyl groups. This is in good agreement with density functional theory (DFT) calculations of their rotation barriers and showcases that conformational flexibility impacts the hindrance of rotation. Using Monte-Carlo based fitting in combination with an identifiability analysis of the MQR model parameter space, we extract rotation barrier distributions for the individual rotor types in mixed-rotor nitroxides as well as identify which rotors dominate the observed tunneling contribution in the Hahn echo decay signal.

3.
Nat Commun ; 15(1): 3101, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600146

ABSTRACT

Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrOx, for CO2 hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrOx catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu0 species form Zn-rich low-nuclearity CuZn clusters on the ZrO2 surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO2-based methanol synthesis.

4.
Dalton Trans ; 53(17): 7292-7302, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38587489

ABSTRACT

Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn2+ impurities in MAPbCl3 to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn2+ spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation. Pulsed EPR experiments are employed to measure the temperature dependences of the spin-lattice relaxation T1 and decoherence T2 times of the Mn2+ ions in the orthorhombic phase of MAPbCl3 revealing a coupling between the spin center and vibrations of the inorganic framework. Low-temperature electron spin echo envelope modulation (ESEEM) experiments of the protonated and deuterated MAPbCl3 analogues show the presence of quantum rotational tunneling of the ammonium groups, allowing to accurately probe their rotational energy landscape.

5.
Protein Sci ; 33(3): e4906, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358120

ABSTRACT

Proteins, especially of eukaryotes, often have disordered domains and may contain multiple folded domains whose relative spatial arrangement is distributed. The MMMx ensemble modeling and analysis toolbox (https://github.com/gjeschke/MMMx) can support the design of experiments to characterize the distributed structure of such proteins, starting from AlphaFold2 predictions or folded domain structures. Weak order can be analyzed with reference to a random coil model or to peptide chains that match the residue-specific Ramachandran angle distribution of the loop regions and are otherwise unrestrained. The deviation of the mean square end-to-end distance of chain sections from their average over sections of the same sequence length reveals localized compaction or expansion of the chain. The shape sampled by disordered chains is visualized by superposition in the principal axes frame of their inertia tensor. Ensembles of different sizes and with weighted conformers can be compared based on a similarity parameter that abstracts from the ensemble width.


Subject(s)
Proteins , Models, Molecular , Proteins/chemistry , Protein Conformation
6.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416412

ABSTRACT

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

7.
Biophys J ; 123(5): 538-554, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38279531

ABSTRACT

Solutions of some proteins phase separate into a condensed state of high protein concentration and a dispersed state of low concentration. Such behavior is observed in living cells for a number of RNA-binding proteins that feature intrinsically disordered domains. It is relevant for cell function via the formation of membraneless organelles and transcriptional condensates. On a basic level, the process can be studied in vitro on protein domains that are necessary and sufficient for liquid-liquid phase separation (LLPS). We have performed distance distribution measurements by electron paramagnetic resonance for 13 sections in an N-terminal domain (NTD) construct of the protein fused in sarcoma (FUS), consisting of the QGSY-rich domain and the RGG1 domain, in the denatured, dispersed, and condensed state. Using 10 distance distribution restraints for ensemble modeling and three such restraints for model validation, we have found that FUS NTD behaves as a random-coil polymer under good-solvent conditions in both the dispersed and condensed state. Conformation distribution in the biomolecular condensate is virtually indistinguishable from the one in an unrestrained ensemble, with the latter one being based on only residue-specific Ramachandran angle distributions. Over its whole length, FUS NTD is slightly more compact in the condensed than in the dispersed state, which is in line with the theory for random coils in good solvent proposed by de Gennes, Daoud, and Jannink. The estimated concentration in the condensate exceeds the overlap concentration resulting from this theory. The QGSY-rich domain is slightly more extended, slightly more hydrated, and has slightly higher propensity for LLPS than the RGG1 domain. Our results support previous suggestions that LLPS of FUS is driven by multiple transient nonspecific hydrogen bonding and π-sp2 interactions.


Subject(s)
Biomolecular Condensates , Solvents
8.
Angew Chem Int Ed Engl ; 63(1): e202313348, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37970660

ABSTRACT

The ethylene polymerization Phillips catalyst has been employed for decades and is central to the polymer industry. While Cr(III) alkyl species are proposed to be the propagating sites, there is so far no direct experimental evidence for such proposal. In this work, by coupling Surface organometallic chemistry, EPR spectroscopy, and machine learning-supported XAS studies, we have studied the electronic structure of well-defined silica-supported Cr(III) alkyls and identified the presence of several surface species in high and low-spin states, associated with different coordination environments. Notably, low-spin Cr(III) sites are shown to participate in ethylene polymerization, indicating that similar Cr(III) alkyl species could be involved in the related Phillips catalyst.

9.
ACS Catal ; 13(24): 15977-15990, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125976

ABSTRACT

The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.

10.
J Magn Reson ; 356: 107573, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37856964

ABSTRACT

Following the success of cryogenic EPR signal preamplification at X-band, we present a Q-band EPR cryoprobe compatible with a standard EPR resonator. The probehead is equipped with a cryogenic ultra low-noise microwave amplifier and its protection circuit that are placed close to the sample in the same cryostat. Our cryoprobe maintains the same sample access and tuning which is typical in Q-band EPR, as well as supports high-power pulsed experiments on typical samples. The performance of our setup is benchmarked against that of existing commercial and home-built Q-band spectrometers, using CW EPR and pulsed EPR/ENDOR experiments to reveal a significant sensitivity improvement which reduces the measurement time by a factor of about 40× at 6 K temperature at reduced power levels.

11.
Inorg Chem ; 62(41): 16661-16668, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37782818

ABSTRACT

Phosphine-stabilized monovalent nickel complexes play an important role in catalysis, either as catalytically active species or as decomposition products. Most routes to access these complexes are highly ligand specific or rely on strong reducing agents. Our group recently disclosed a path to access nickel(I)-phenolate complexes from bis(1,5-cyclooctadiene)nickel(0) (Ni(cod)2). Herein, we demonstrate this protocol's broad applicability by ligating a wide range of mono- and bidentate phosphine ligands. We further show the versatility of the phenolate fragment as a precursor to nickel(I)-alkyl or aryl species, which are relevant to Ni catalysis or synthetically useful nickel(I)-chloride and hydride complexes. We also demonstrate that the chloride complex can be synthesized in a one-pot procedure starting from Ni(cod)2 in good yield, making this protocol a valuable alternative to current procedures. Single-crystal X-ray diffraction, IR, and EPR (or NMR) spectroscopy were employed to characterize all of the synthesized nickel complexes.

12.
Nat Commun ; 14(1): 6429, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833274

ABSTRACT

RNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV). This binding, essential for enhancing the translation of viral RNA, leads to a complex structure that demonstrates RNA and protein compaction, while maintaining pronounced conformational flexibility. Acting as an RNA chaperone, PTBP1 orchestrates the IRES RNA into a few distinct conformations, exposing the RNA stems outward. This conformational diversity is likely common among RNP structures and functionally important. Our approach enables atomic-level characterization of heterogeneous RNP structures.


Subject(s)
Internal Ribosome Entry Sites , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , Encephalomyocarditis virus/genetics , RNA, Viral/metabolism , Nucleic Acid Conformation , Protein Biosynthesis
13.
Nat Commun ; 14(1): 5557, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689779

ABSTRACT

Carbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle. Combining operando X-ray absorption spectroscopy with other spectroscopic and kinetic analyses, we monitor the structure of single metal atoms (Pt, Au, Ru) and carbon supports (activated, non-activated, and nitrogen-doped) from catalyst synthesis, using various procedures, to operation at different conditions. Metal atoms exclusively activate hydrogen chloride, while metal-neighboring sites in the support bind acetylene. Resolving the coordination environment of working metal atoms guides theoretical simulations in proposing potential binding sites for acetylene in the support and a viable reaction profile. Expanding from single-atom to ensemble catalysis, these results reinforce the importance of optimizing both metal and support components to leverage the distinct functions of each for advancing catalyst design.

14.
JACS Au ; 3(7): 1939-1951, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502165

ABSTRACT

Propane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances. Chemisorption experiments and density functional calculations reveal a significant change in the electronic structure of the nanoparticles (NPs) due to the Ti-doping. Evaluation of the resulting materials PtZn/SiO2 and PtZnTi/SiO2 during long deactivation phases reveal a stabilizing effect of Ti in PtZnTi/SiO2 with a kd of 0.015 h-1 compared to PtZn/SiO2 with a kd of 0.022 h-1 over 108 h on stream. Such a stabilizing effect is also present during a second deactivation phase after applying a regeneration protocol to the materials under O2 and H2 at high temperatures. A combined scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory study reveals that this effect is related to a sintering prevention of the alloyed PtZn NPs in PtZnTi/SiO2 due to a strong interaction of the NPs with Ti sites. However, in contrast to classical strong metal-support interaction, we show that the coverage of the Pt NPs with TiOx species is not needed to explain the changes in adsorption and reactivity properties. Indeed, the interaction of the Pt NPs with TiIII sites is enough to decrease CO adsorption and to induce a red-shift of the CO band because of electron transfer from the TiIII sites to Pt0.

15.
Angew Chem Int Ed Engl ; 62(34): e202303574, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37292054

ABSTRACT

Cu-exchanged mordenite (MOR) is a promising material for partial CH4 oxidation. The structural diversity of Cu species within MOR makes it difficult to identify the active Cu sites and to determine their redox and kinetic properties. In this study, the Cu speciation in Cu-MOR materials with different Cu loadings has been determined using operando electron paramagnetic resonance (EPR) and operando ultraviolet-visible (UV/Vis) spectroscopy as well as in situ photoluminescence (PL) and Fourier-transform infrared (FTIR) spectroscopy. A novel pathway for CH4 oxidation involving paired [CuOH]+ and bare Cu2+ species has been identified. The reduction of bare Cu2+ ions facilitated by adjacent [CuOH]+ demonstrates that the frequently reported assumption of redox-inert Cu2+ centers does not generally apply. The measured site-specific reaction kinetics show that dimeric Cu species exhibit a faster reaction rate and a higher apparent activation energy than monomeric Cu2+ active sites highlighting their difference in the CH4 oxidation potential.

16.
Chem Commun (Camb) ; 59(39): 5866-5869, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37089062

ABSTRACT

We report on the synthesis and spectroscopic evidence for a sequence of structural transformations of a new defect-cubane type copper complex, [Cu4(pyalk)4(OAc)4](ClO4)(HNEt3), which acts as a pre-catalyst for water oxidation. In situ and post-catalytic studies showed that the tetrameric complex undergoes a structural transformation into dimeric and monomeric species, induced by water molecules and carbonate anions, respectively. Further, the observed electrocatalytic water oxidation activity has been confirmed to arise from in situ-generated Cu(II) oxidic nanostructures at the electrode interface.

17.
Phys Chem Chem Phys ; 25(16): 11145-11157, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37038726

ABSTRACT

The low-temperature Hahn echo decay signal of the pyrroline-based nitroxide H-mNOHex in ortho-terphenyl (OTP) shows two contributions on distinct time scales. Tunneling of the nitroxide's methyl groups cause electron spin echo envelope modulation (ESEEM) on a faster time scale compared to the slower matrix-induced decoherence contribution arising from nuclear pair ESEEM. Here we introduce the methyl quantum rotor (MQR) model that describes tunneling ESEEM originating from multiple methyl rotors coupled to the same electron spin. By formulating the MQR model based on a rotation barrier distribution P(V3), we account for the different local environments in a glassy matrix. Using this framework, we determine the methyl groups' rotation barrier distribution from experimental Hahn echo decay/two-pulse ESEEM data by a non-linear fitting approach. The inferred distributions are in good agreement with density functional theory (DFT) calculations of the methyl groups' rotation barriers in the low-temperature regime where tunneling constitutes the dominant methyl proton exchange process. In addition to comparing our results with previous decoherence studies performed on the same spin system, we experimentally confirm the characteristic properties of methyl tunneling by demonstrating that P(V3) is magnetic field independent and predominantly temperature independent between 10 and 50 K. This confirms the assignment of the fast Hahn echo decay contribution to methyl tunneling, showcasing how pulsed EPR sequences can coherently probe this quantum phenomenon for commonly employed nitroxide spin-labels.

18.
Adv Mater ; 35(24): e2211260, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36863934

ABSTRACT

Nitrous oxide, N2 O, exhibits unique reactivity in oxidation catalysis, but the high manufacturing costs limit its prospective uses. Direct oxidation of ammonia, NH3 , to N2 O can ameliorate this issue but its implementation is thwarted by suboptimal catalyst selectivity and stability, and the lack of established structure-performance relationships. Systematic and controlled material nanostructuring offers an innovative approach for advancement in catalyst design. Herein low-valent manganese atoms stabilized on ceria, CeO2 , are discovered as the first stable catalyst for NH3 oxidation to N2 O, exhibiting two-fold higher productivity than the state-of-the-art. Detailed mechanistic, computational and kinetic studies reveal CeO2 as the mediator of oxygen supply, while undercoordinated manganese species activate O2 and facilitate N2 O evolution via NN bond formation between nitroxyl, HNO, intermediates. Synthesis via simple impregnation of a small metal quantity (1 wt%) predominantly generates isolated manganese sites, while full atomic dispersion is achieved upon redispersion of sporadic oxide nanoparticles during reaction, as confirmed by advanced microscopic analysis and electron paramagnetic resonance spectroscopy. Subsequently, manganese speciation is maintained, and no deactivation is observed over 70 h on stream. CeO2 -supported isolated transition metals emerge as a novel class of materials for N2 O production, encouraging future studies to evaluate their potential in selective catalytic oxidations at large.

19.
Adv Mater ; 35(26): e2211464, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36964929

ABSTRACT

Copper catalysts are attractive candidates for Hg-free vinyl chloride monomer (VCM) production via acetylene hydrochlorination due to their non-toxic nature and high stability. However, the optimal architecture for Cu-based catalysts at the nanoscale is not yet fully understood. To address this gap, the metal precursor and the annealing temperature are modified to prepare copper nanoparticles or single atoms, either in chlorinated or ligand-free form, on an unmodified carbon support. Evaluation in the reaction reveals a remarkable convergence of the performance of all materials to the stable VCM productivity of the single-atom catalyst. In-depth characterization by advanced microscopy, quasi in situ and operando spectroscopy, and simulations uncover a reaction-induced formation of low-valent, single atom Cu(I)Cl site motif, regardless of the initial nanostructure. Various surface oxygen groups promote nanoparticle redispersion by stabilizing single-atom CuClx species. The anchoring site structure does not strongly influence the acetylene adsorption energy or the crucial role they play in stabilizing key reaction intermediates. A life-cycle assessment demonstrates the potential environmental benefits of copper catalysts over state-of-the-art alternatives. This work contributes to a better understanding of optimal metal speciation and highlights the sustainability of Cu-based catalysts for VCM production.

20.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770643

ABSTRACT

At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn2+ ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co2+ paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co2+ center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn2+ case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...