Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 254: 114741, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36950990

ABSTRACT

For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.


Subject(s)
Brassica napus , Europium , Europium/chemistry , Spectrum Analysis
2.
J Hazard Mater ; 439: 129520, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35908404

ABSTRACT

Daucus carota suspension cells showed a high affinity towards Eu(III) and U(VI) based on a single-step bioassociation process with an equilibrium after 48-72 h. Cells responded with an increased metabolic activity towards heavy metal stress. Luminescence spectroscopy pointed to multiple species for both f-block elements in the culture media, providing initial hints of their interaction with cells and released metabolites. Using nuclear magnetic resonance spectroscopy, we could prove that malate, as an released metabolite in the culture medium, was found to complex with U. Luminescence spectroscopy also showed that Eu(III)-EDTA species are interacting with the cells. Furthermore, Eu(III) and U(VI) coordination is dominated by phosphate groups provided by the cells. We found that Ca ion channels of D. carota cells were involved in the uptake of U(VI), which led to a bioprecipitation of U(VI) in the vacuole of the cells, most probably as uranyl(VI) phosphates along with an intracellular sorption of U(VI) on biomembranes by lipid structures. Eu(III) could be found locally concentrated in the cell wall and in the cytoplasm with a co-localization with phosphorous and oxygen.


Subject(s)
Daucus carota , Uranium , Water Pollutants, Radioactive , Daucus carota/metabolism , Phosphates , Plant Cells/metabolism , Suspensions , Uranium/chemistry , Water Pollutants, Radioactive/analysis
3.
Environ Sci Technol ; 55(10): 6718-6728, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33929840

ABSTRACT

In this study, we investigated the interaction of U(VI) and Eu(III) with Brassica napus suspension plant cells as a model system. Concentration-dependent (0-200 µM) bioassociation experiments showed that more than 75% of U(VI) and Eu(III) were immobilized by the cells. In addition to this phenomenon, time-dependent studies for 1 to 72 h of exposure showed a multistage bioassociation process for cells that were exposed to 200 µM U(VI), where, after initial immobilization of U(VI) within 1 h of exposure, it was released back into the culture medium starting within 24 h. A remobilization to this extent has not been previously observed. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to correlate the bioassociation behavior of Eu and U with the cell vitality. Speciation studies by spectroscopy and in silico methods highlighted various U and Eu species over the course of exposure. We were able to observe a new U species, which emerged simultaneously with the remobilization of U back into the solution, which we assume to be a U(VI) phosphate species. Thus, the interaction of U(VI) and Eu(III) with released plant metabolites could be concluded.


Subject(s)
Brassica napus , Uranium , Cell Culture Techniques , Spectrometry, Fluorescence
4.
Ecotoxicol Environ Saf ; 211: 111883, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33454591

ABSTRACT

For the first time, the physiological and cellular responses of Nicotiana tabacum (BY-2) cells to uranium (U) as an abiotic stressor were studied using a multi-analytic approach that combined biochemical analysis, thermodynamic modeling and spectroscopic studies. The goal of this investigation was to determine the U threshold toxicity in tobacco BY-2 cells, the influence of U on the homeostasis of micro-macro essential nutrients, as well as the effect of Fe starvation on U bioassociation in cultured BY-2 cells. Our findings demonstrated that U interferes with the homeostasis of essential elements. The interaction of U with BY-2 cells confirmed both time- and concentration-dependent kinetics. Under Fe deficiency, a reduced level of U was detected in the cells compared to Fe-sufficient conditions. Interestingly, blocking the Ca channels with gadolinium chloride caused a decrease in U concentration in the BY-2 cells. Spectroscopic studies evidenced changes in the U speciation in the culture media with increasing exposure time under both Fe-sufficient and deficient conditions, leading us to conclude that different stress response reactions are related to Fe metabolism. Moreover, it is suggested that U toxicity in BY-2 cells is highly dependent on the existence of other micro-macro elements as shown by negative synergistic effects of U and Fe on cell viability.


Subject(s)
Environmental Pollutants/toxicity , Uranium/toxicity , Homeostasis , Oxidation-Reduction , Stress, Physiological , Thermodynamics , Nicotiana/metabolism , Toxicity Tests , Uranium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...