Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
N Am Spine Soc J ; 15: 100234, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37564913

ABSTRACT

Background: Robotic assistance has been shown to increase instrumentation placement accuracy in open and minimally invasive spinal fusion. These gains have been achieved without increases in operative times, blood loss, or hospitalization duration. However, most work has been done in the degenerative population and little is known of the utility of robotic assistance when applied to spinal trauma. This is largely due to the uncertainty stemming from the disruption of normal anatomy by the traumatic injury. Since the robot depends upon registration for instrumentation guidance according to the fiducials it uses, trauma can introduce unique challenges. The present study sought to evaluate the safety and efficacy of robotic assistance in a consecutive cohort of spine trauma patients. Methods: All patients with Thoracolumbar Injury Classification and Severity Scale (TLICS) >4 who underwent robot-assisted spinal fusion using the Globus ExcelsiusGPS at a single tertiary care center for trauma between 2020 and 2022 were identified. Demographic, clinical, and surgical data were collected and analyzed; the primary endpoints were operative time, fluoroscopy time, estimated blood loss, postoperative complications, admission time, and 90-day readmission rate. The paired t-test was used to compare differences between mean values when looking at the number of surgical levels. Results: Forty-two patients undergoing robot-assisted spinal surgery were included (mean age 61.3±17.1 year; 47% female. Patients were stratified by the number of operative levels, 2 (n = 10), 3-4 (n = 11), 5 to 6 (n = 13), or >6 (n = 8). There appeared to be a positive correlation between number of levels instrumented and odds of postoperative complications, admission duration, fluoroscopy time, and estimated blood loss. There were no instances of screw malposition or breach. Conclusions: This initial experience suggests robotic assistance can be safely employed in the spine trauma population. Additional experiences in larger patient populations are necessary to delineate those traumatic pathologies most amenable to robotic assistance.

2.
Expert Opin Biol Ther ; 12(2): 165-78, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22200324

ABSTRACT

INTRODUCTION: Glioblastoma multiforme (GBM) is the most aggressive and lethal primary malignant brain tumor. Although progress has been made in current conventional therapies for GBM patients, the effect of these advances on clinical outcomes has been disappointing. Recent research into the origin of cancers suggest that GBM cancer stem cells (GSC) are the source of initial tumor formation, resistance to current conventional therapeutics and eventual patient relapse. Currently, there are very few studies that apply immunotherapy to target GSC. AREAS COVERED: CD133, a cell surface protein, is used extensively as a surface marker to identify and isolate GSC in malignant glioma. We discuss biomarkers such as CD133, L1-cell adhesion molecule (L1-CAM), and A20 of GSC. We review developing novel treatment modalities, including immunotherapy strategies, to target GSC. EXPERT OPINION: There are very few reports of preclinical studies targeting GSC. Identification and validation of unique molecular signatures and elucidation of signaling pathways involved in survival, proliferation and differentiation of GSC will significantly advance this field and provide a framework for the rational design of a new generation of antigen-specific, anti-GSC immunotherapy- and nanotechnology-based targeted therapyies. Combined with other therapeutic avenues, GSC-targeting therapies may represent a new paradigm to treat GBM patients.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , Glioblastoma/immunology , Glioblastoma/therapy , Immunotherapy, Adoptive/methods , Neoplastic Stem Cells/immunology , Animals , Biomarkers, Tumor/immunology , Brain Neoplasms/pathology , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Glioblastoma/pathology , Glioma/immunology , Glioma/pathology , Glioma/therapy , Humans , Immunotherapy, Adoptive/trends , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL