Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(47): 13734-13742, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075655

ABSTRACT

Development of non-aqueous redox flow batteries as a viable energy storage solution relies upon the identification of soluble charge carriers capable of storing large amounts of energy over extended time periods. A combination of metrics including number of electrons stored per molecule, redox potential, stability, and solubility of the charge carrier impact performance. In this context, we recently reported a 2,2'-bipyrimidine charge carrier that stores two electrons per molecule with reduction near -2.0 V vs. Fc/Fc+ and high stability. However, these first-generation derivatives showed a modest solubility of 0.17 M (0.34 M e-). Seeking to improve solubility without sacrificing stability, we harnessed the synthetic modularity of this scaffold to design a library of sixteen candidates. Using computed molecular descriptors and a single node decision tree, we found that minimization of the solvent accessible surface area (SASA) can be used to predict derivatives with enhanced solubility. This parameter was used in combination with a heatmap describing stability to de-risk a virtual screen that ultimately identified a 2,2'-bipyrimidine with significantly increased solubility and good stability metrics in the reduced states. This molecule was paired with a cyclopropenium catholyte in a prototype all-organic redox flow battery, achieving a cell potential up to 3 V.

2.
Tetrahedron ; 74(25): 3129-3136, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-30479455

ABSTRACT

Heteroaryl thioethers, comprised of pyridines and diazines, are an important class of compounds with relevance to medicinal chemistry. Metal-catalyzed cross-couplings and SNAr are traditionally used to form C-S bonds in these systems but are limited by available halogenated precursors. An alternative approach is presented where pyridines and diazines are transformed into heterocyclic phosphonium salts and then C-S bonds are formed by adding thiolate nucleophiles. The process is 4-selective for pyridines, simple to execute and can be used to make derivatives of complex pharmaceuticals.

3.
Angew Chem Int Ed Engl ; 57(38): 12514-12518, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30084203

ABSTRACT

Coupling aromatic heteronucleophiles to arenes is a common way to assemble drug-like molecules. Many methods operate via nucleophiles intercepting organometallic intermediates, via Pd-, Cu-, and Ni-catalysis, that facilitate carbon-heteroatom bond formation and a variety of protocols. We present an alternative, unified strategy where phosphonium salts can replicate the behavior of organometallic intermediates. Under a narrow set of reaction conditions, a variety of aromatic heteronucleophile classes can be coupled to pyridines and diazines that are often problematic in metal-catalyzed couplings, such as where (pseudo)halide precursors are unavailable in complex structures with multiple polar functional groups.


Subject(s)
Heterocyclic Compounds/chemistry , Pharmaceutical Preparations/chemistry , Carbon/chemistry , Catalysis , Copper/chemistry , Nickel/chemistry , Palladium/chemistry , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL