Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 10: 1045, 2020.
Article in English | MEDLINE | ID: mdl-32850308

ABSTRACT

Importance: Tumor Treating Fields (TTFields) are an anti-mitotic treatment approved for treating newly diagnosed and recurrent glioblastoma, and mesothelioma. TTFields in glioblastoma comprise alternating electric fields (200 kHz) delivered continuously, ideally for ≥18 h/day, to the tumor bed via transducer arrays placed on the shaved scalp. When applied locoregionally to the tumor bed and combined with systemic temozolomide chemotherapy, TTFields improved overall survival vs. temozolomide alone in patients with newly diagnosed glioblastoma. Improved efficacy outcomes with TTFields were demonstrated, while maintaining a well-tolerated and manageable safety profile. The most commonly-reported TTFields-associated adverse events (AEs) are beneath-array dermatologic events. Since survival benefit from TTFields increases with duration-of-use, prevention and management of skin AEs are critical to maximize adherence. This paper describes TTFields-associated dermatological AEs and recommends prevention and management strategies based on clinical trial evidence and real-world clinical experience. Observations: TTFields-associated skin reactions include contact dermatitis (irritant/allergic), hyperhidrosis, xerosis or pruritus, and more rarely, skin erosions/ulcers and infections. Skin AEs may be prevented through skin-care and shifting (~2 cm) of array position during changes. TTFields-related skin AE management should be based on clinical phenotype and severity. Depending on diagnosis, recommended treatments include antibiotics, skin barrier films, moisturizers, topical corticosteroids, and antiperspirants. Water-based lotions, soaps, foams, and solutions with minimal impact on electrical impedance are preferred with TTFields use over petroleum-based ointments, which increase impedance. Conclusions: Early identification, prophylactic measures, and symptomatic skin AE management help patients maximize TTFields usage, while maintaining quality-of-life and optimizing therapeutic benefit. Implications for practice: TTFields confer a survival benefit in patients with glioblastoma that correlates positively with duration of daily use. Skin events (rash) are the primary treatment-related AE that can limit duration of use. The recommendations described here will help healthcare professionals to recognize, prevent, and manage dermatologic AEs associated with TTFields treatment. These recommendations may improve cutaneous health and support adherence to therapy, both of which would maximize treatment outcomes.

2.
Cancer ; 125(21): 3790-3800, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31290996

ABSTRACT

BACKGROUND: Src signaling is markedly upregulated in patients with invasive glioblastoma (GBM) after the administration of bevacizumab. The Src family kinase inhibitor dasatinib has been found to effectively block bevacizumab-induced glioma invasion in preclinical models, which led to the hypothesis that combining bevacizumab with dasatinib could increase bevacizumab efficacy in patients with recurrent GBM. METHODS: After the completion of the phase 1 component, the phase 2 trial (ClinicalTrials.gov identifier NCT00892177) randomized patients with recurrent GBM 2:1 to receive 100 mg of oral dasatinib twice daily (arm A) or placebo (arm B) on days 1 to 14 of each 14-day cycle combined with 10 mg/kg of intravenous bevacizumab on day 1 of each 14-day cycle. The primary endpoint was 6-month progression-free survival (PFS6). RESULTS: In the 121 evaluable patients, the PFS6 rate was numerically, but not statistically, higher in arm A versus arm B (28.9% [95% CI, 19.5%-40.0%] vs 18.4% [95% CI, 7.7%-34.4%]; P = .22). Similarly, there was no significant difference in the median overall survival noted between the treatment arms (7.3 months and 7.7 months, respectively; P = .93). The objective response rate was 15.7% in arm A and 26.3% in arm B (P = .52), but with a significantly longer duration in patients treated on arm A (16.3 months vs 2 months). The incidence of grade ≥3 toxicity was comparable between treatment arms, with hematologic toxicities occurring more frequently in arm A versus arm B (15.7% vs 7.9%) (adverse events were assessed as per the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]). Correlative tissue analysis demonstrated an association between pSRC/LYN signaling in patient tumors and outcome. CONCLUSIONS: Despite upregulation of Src signaling in patients with GBM, the combination of bevacizumab with dasatinib did not appear to significantly improve the outcomes of patients with recurrent GBM compared with bevacizumab alone.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/administration & dosage , Bevacizumab/adverse effects , Brain Neoplasms/pathology , Dasatinib/administration & dosage , Dasatinib/adverse effects , Drug Administration Schedule , Fatigue/chemically induced , Female , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , Lymphopenia/chemically induced , Male , Middle Aged , Neoplasm Recurrence, Local , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Young Adult
3.
Curr Treat Options Neurol ; 6(4): 273-284, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15157405

ABSTRACT

Advances in neurosurgery and the development of stereotactic radiosurgery have expanded treatment options available for patients with brain metastases. However, despite several randomized clinical trials and multiple uncontrolled studies, there is not a uniform consensus on the best treatment strategy for all patients with brain metastases. The heterogeneity of this patient population in terms of functional status, types of underlying cancers, status of systemic disease control, and number and location of brain metastases make such consensus difficult. Nevertheless, in certain situations, there is Class I evidence that supports one approach or another. The primary objectives in the management of this patient population include improved duration and quality of survival. Very few patients achieve long-term survival after the diagnosis of a brain metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL