Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Magn Reson Med ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970460

ABSTRACT

PURPOSE: T2-weighted DANTE-SPACE (Delay Alternating with Nutation for Tailored Excitation - Sampling Perfection with Application optimized Contrasts using different flip angle Evolution) sequences facilitate non-invasive intracranial vessel wall imaging at 7T through simultaneous suppression of blood and CSF. However, the achieved vessel wall delineation depends closely on the selected sequence parameters, and little information is available about the performance of the sequence using more widely available 3T MRI. Therefore, in this paper a comprehensive DANTE-SPACE simulation framework is used for the optimization and quantitative comparison of T2-weighted DANTE-SPACE at both 7T and 3T. METHODS: Simulations are used to propose optimized sequence parameters at both 3T and 7T. At 7T, an additional protocol which uses a parallel transmission (pTx) shim during the DANTE preparation for improved suppression of inflowing blood is also proposed. Data at both field strengths using optimized and literature protocols are acquired and quantitatively compared in six healthy volunteers. RESULTS: At 7T, more vessel wall signal can be retained while still achieving sufficient CSF suppression by using fewer DANTE pulses than described in previous implementations. The use of a pTx shim during DANTE at 7T provides a modest further improvement to the inner vessel wall delineation. At 3T, aggressive DANTE preparation is required to achieve CSF suppression, resulting in reduced vessel wall signal. As a result, the achievable vessel wall definition at 3T is around half that of 7T. CONCLUSION: Simulation-based optimization of DANTE parameters facilitates improved T2-weighted DANTE-SPACE contrasts at 7T. The improved vessel definition of T2-weighted DANTE-SPACE at 7T makes DANTE preparation more suitable for T2-weighted VWI at 7T than at 3T.

2.
Magn Reson Med ; 92(1): 332-345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38469983

ABSTRACT

PURPOSE: The delay alternating with nutation for tailored excitation (DANTE)-sampling perfection with application-optimized contrasts (SPACE) sequence facilitates 3D intracranial vessel wall imaging with simultaneous suppression of blood and CSF. However, the achieved image contrast depends closely on the selected sequence parameters, and the clinical use of the sequence is limited in vivo by observed signal variations in the vessel wall, CSF, and blood. This paper introduces a comprehensive DANTE-SPACE simulation framework, with the aim of providing a better understanding of the underlying contrast mechanisms and facilitating improved parameter selection and contrast optimization. METHODS: An extended phase graph formalism was developed for efficient spin ensemble simulation of the DANTE-SPACE sequence. Physiological processes such as pulsatile flow velocity variation, varying flow directions, intravoxel velocity variation, diffusion, and B 1 + $$ {\mathrm{B}}_1^{+} $$ effects were included in the framework to represent the mechanisms behind the achieved signal levels accurately. RESULTS: Intravoxel velocity variation improved temporal stability and robustness against small velocity changes. Time-varying pulsatile velocity variation affected CSF simulations, introducing periods of near-zero velocity and partial rephasing. Inclusion of diffusion effects was found to substantially reduce the CSF signal. Blood flow trajectory variations had minor effects, but B 1 + $$ {\mathrm{B}}_1^{+} $$ differences along the trajectory reduced DANTE efficiency in low- B 1 + $$ {\mathrm{B}}_1^{+} $$ areas. Introducing low-velocity pulsatility of both CSF and vessel wall helped explain the in vivo observed signal heterogeneity in both tissue types. CONCLUSION: The presented simulation framework facilitates a more comprehensive optimization of DANTE-SPACE sequence parameters. Furthermore, the simulation framework helps to explain observed contrasts in acquired data.


Subject(s)
Algorithms , Brain , Computer Simulation , Imaging, Three-Dimensional , Humans , Brain/diagnostic imaging , Brain/blood supply , Imaging, Three-Dimensional/methods , Blood Flow Velocity/physiology , Image Processing, Computer-Assisted/methods , Pulsatile Flow/physiology , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods
3.
Magn Reson Med ; 91(1): 190-204, 2024 01.
Article in English | MEDLINE | ID: mdl-37794847

ABSTRACT

PURPOSE: Neurovascular MRI suffers from a rapid drop in B1 + into the neck when using transmit head coils at 7 T. One solution to improving B1 + magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B1 + maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B1 + mapping techniques, and B0 sensitivity. We therefore sought a robust, large-dynamic-range, parallel-transmit field mapping protocol and tested whether RF shimming can improve carotid artery B1 + magnitude in practice. METHODS: A pipeline is presented that combines B1 + mapping data acquired using circularly polarized (CP) and CP2-mode RF shims at multiple voltages. The pipeline was evaluated by comparing the predicted and measured B1 + for multiple random transmit shims, and by assessing the ability of RF shimming to increase B1 + in the carotid arteries. RESULTS: The proposed method achieved good agreement between predicted and measured B1 + in both the head and the neck. The B1 + magnitude in the carotid arteries can be increased by 43% using tailored RF shims or by 37% using universal RF shims, while also improving the RF homogeneity compared with CP mode. CONCLUSION: B1 + in the neck can be increased using RF shims calculated from multichannel B1 + maps in both the head and the neck. This can be achieved using universal phase-only RF shims, facilitating easy implementation in existing sequences.


Subject(s)
Head , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Head/diagnostic imaging , Neck/diagnostic imaging , Carotid Arteries/diagnostic imaging , Radio Waves , Phantoms, Imaging
4.
Front Neurosci ; 17: 1254209, 2023.
Article in English | MEDLINE | ID: mdl-37719157

ABSTRACT

Background: Cerebral small vessel disease (cSVD) is associated with endothelial dysfunction but the pathophysiology is poorly understood. Low-frequency oscillations (LFOs) in the BOLD signal partly reflect cerebrovascular function and have the potential to identify endothelial dysfunction in cSVD. A systematic review was performed to assess the reported relationships between imaging markers of cSVD and LFOs. Methods: Medline and EMBASE were searched for original studies reporting an association between LFOs and STRIVE-defined imaging markers of cSVD, including: white matter hyperintensities (WMH), enlarged perivascular spaces, lacunes, CADASIL, and cerebral microbleeds, from inception to September 1, 2022. Variations in LFOs were extracted, where available, on a global, tissue-specific, or regional level, in addition to participant demographics, data acquisition, methods of analysis, and study quality. Where a formal meta-analysis was not possible, differences in the number of studies reporting LFO magnitude by presence or severity of cSVD were determined by sign test. Results: 15 studies were included from 841 titles. Studies varied in quality, acquisition parameters, and in method of analysis. Amplitude of low-frequency fluctuation (ALFF) in resting state fMRI was most commonly assessed (12 studies). Across 15 studies with differing markers of cSVD (9 with WMH; 1 with cerebral microbleeds; 1 with lacunar infarcts; 1 with CADASIL; 3 with multiple markers), LFOs in patients with cSVD were decreased in the posterior cortex (22 of 32 occurrences across all studies, p = 0.05), increased in the deep grey nuclei (7 of 7 occurrences across all studies, p = 0.016), and potentially increased in the temporal lobes (9 of 11 occurrences across all studies, p = 0.065). Conclusion: Despite limited consensus on the optimal acquisition and analysis methods, there was reasonably consistent regional variation in LFO magnitude by severity of cSVD markers, supporting its potential as a novel index of endothelial dysfunction. We propose a consistent approach to measuring LFOs to characterise targetable mechanisms underlying cSVD.

5.
Magn Reson Med ; 90(6): 2643-2652, 2023 12.
Article in English | MEDLINE | ID: mdl-37529979

ABSTRACT

PURPOSE: To develop a temperature-controlled cooling system to facilitate accurate quantitative post-mortem MRI and enable scanning of unfixed tissue. METHODS: A water cooling system was built and integrated with a 7T scanner to minimize temperature drift during MRI scans. The system was optimized for operational convenience and rapid deployment to ensure efficient workflow, which is critical for scanning unfixed post-mortem samples. The performance of the system was evaluated using a 7-h diffusion MRI protocol at 7T with a porcine tissue sample. Quantitative T1 , T2 , and ADC maps were interspersed with the diffusion scans at seven different time points to investigate the temperature dependence of MRI tissue parameters. The impact of temperature changes on biophysical model fitting of diffusion MRI data was investigated using simulation. RESULTS: Tissue T1 , T2 , and ADC values remained stable throughout the diffusion MRI scan using the developed cooling system, but varied substantially using a conventional scan setup without temperature control. The cooling system enabled accurate estimation of biophysical model parameters by stabilizing the tissue temperature throughout the diffusion scan, while the conventional setup showed evidence of significantly biased estimation. CONCLUSION: A temperature-controlled cooling system was developed to tackle the challenge of heating in post-mortem imaging, which shows potential to improve the accuracy and reliability of quantitative post-mortem imaging and enables long scans of unfixed tissue.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Swine , Animals , Temperature , Reproducibility of Results , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Autopsy
6.
PLoS One ; 18(8): e0288529, 2023.
Article in English | MEDLINE | ID: mdl-37556496

ABSTRACT

BACKGROUND: Accurate assessment of plaque accumulation near the carotid bifurcation is important for the effective prevention and treatment of stroke. However, vessel and plaque delineation using MRI can be limited by low contrast-to-noise ratio (CNR) and long acquisition times. In this work, a 10-channel phased-array receive coil design for bilateral imaging of the carotid bifurcation using 3T MRI is proposed. METHODS: The proposed 10-channel receive coil was compared to a commercial 4-channel receive coil configuration using data acquired from phantoms and healthy volunteers (N = 9). The relative performance of the coils was assessed, by comparing signal-to-noise ratio (SNR), noise correlation, g-factor noise amplification, and the CNR between vessel wall and lumen using black-blood sequences. Patient data were acquired from 12 atherosclerotic carotid artery disease patients. RESULTS: The 10-channel coil consistently provided substantially increased SNR in phantoms (+77 ± 27%) and improved CNR in healthy carotid arteries (+62 ± 11%), or reduced g-factor noise amplification. Patient data showed excellent delineation of atherosclerotic plaque along the length of the carotid bifurcation using the 10-channel coil. CONCLUSIONS: The proposed 10-channel coil design allows for improved visualization of the carotid arteries and the carotid bifurcation and increased parallel imaging acceleration factors relative to a commercial 4-channel coil design.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Humans , Carotid Arteries/diagnostic imaging , Magnetic Resonance Imaging/methods , Carotid Artery Diseases/diagnostic imaging , Signal-To-Noise Ratio , Phantoms, Imaging
7.
Magn Reson Med ; 90(2): 432-443, 2023 08.
Article in English | MEDLINE | ID: mdl-37010811

ABSTRACT

PURPOSE: To develop an accelerated 3D intracranial time-of-flight (TOF) magnetic resonance angiography (MRA) sequence with wave-encoding (referred to as 3D wave-TOF) and to evaluate two variants: wave-controlled aliasing in parallel imaging (CAIPI) and compressed-sensing wave (CS-wave). METHODS: A wave-TOF sequence was implemented on a 3 T clinical scanner. Wave-encoded and Cartesian k-space datasets from six healthy volunteers were retrospectively and prospectively undersampled with 2D-CAIPI sampling and variable-density Poisson disk sampling. 2D-CAIPI, wave-CAIPI, standard CS, and CS-wave schemes were compared at various acceleration factors. Flow-related artifacts in wave-TOF were investigated, and a set of practicable wave parameters was developed. Quantitative analysis of wave-TOF and traditional Cartesian TOF MRA was performed by comparing the contrast-to-background ratio between the vessel and background tissue in source images, and the structural similarity index measure (SSIM) between the maximum intensity projection images from accelerated acquisitions and their respective fully sampled references. RESULTS: Flow-related artifacts caused by the wave-encoding gradients in wave-TOF were eliminated by properly chosen parameters. Images from wave-CAIPI and CS-wave acquisitions had a higher SNR and better-preserved contrast than traditional parallel imaging (PI) and CS methods. Maximum intensity projection images from wave-CAIPI and CS-wave acquisitions had a cleaner background, with vessels that were better depicted. Quantitative analyses indicated that wave-CAIPI had the highest contrast-to-background ratio, SSIM, and vessel-masked SSIM among the sampling schemes studied, followed by the CS-wave acquisition. CONCLUSION: 3D wave-TOF improves the capability of accelerated MRA and provides better image quality at higher acceleration factors compared to traditional PI- or CS-accelerated TOF, suggesting the potential use of wave-TOF in cerebrovascular disease.


Subject(s)
Artifacts , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Retrospective Studies , Acceleration , Healthy Volunteers , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods
8.
Magn Reson Med ; 89(6): 2376-2390, 2023 06.
Article in English | MEDLINE | ID: mdl-36656151

ABSTRACT

PURPOSE: To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI. METHODS: Synthetic T1 -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. RESULTS: The averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. CONCLUSION: We found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging
9.
PLoS One ; 17(9): e0273704, 2022.
Article in English | MEDLINE | ID: mdl-36173949

ABSTRACT

INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study.


Subject(s)
Brain , COVID-19 , Humans , Biological Specimen Banks , Brain/diagnostic imaging , COVID-19/diagnostic imaging , Magnetic Resonance Imaging , Phenotype , Reproducibility of Results , SARS-CoV-2 , United Kingdom
11.
Magn Reson Med ; 88(1): 341-356, 2022 07.
Article in English | MEDLINE | ID: mdl-35253936

ABSTRACT

PURPOSE: In chemical exchange saturation transfer imaging, saturation effects between - 2 to - 5 ppm (nuclear Overhauser effects, NOEs) have been shown to exhibit contrast in preclinical stroke models. Our previous work on NOEs in human stroke used an analysis model that combined NOEs and semisolid MT; however their combination might feasibly have reduced sensitivity to changes in NOEs. The aim of this study was to explore the information a 4-pool Bloch-McConnell model provides about the NOE contribution in ischemic stroke, contrasting that with an intentionally approximate 3-pool model. METHODS: MRI data from 12 patients presenting with ischemic stroke were retrospectively analyzed, as well as from six animals induced with an ischemic lesion. Two Bloch-McConnell models (4 pools, and a 3-pool approximation) were compared for their ability to distinguish pathological tissue in acute stroke. The association of NOEs with pH was also explored, using pH phantoms that mimic the intracellular environment of naïve mouse brain. RESULTS: The 4-pool measure of NOEs exhibited a different association with tissue outcome compared to 3-pool approximation in the ischemic core and in tissue that underwent delayed infarction. In the ischemic core, the 4-pool measure was elevated in patient white matter ( 1.20±0.20 ) and in animals ( 1.27±0.20 ). In the naïve brain pH phantoms, significant positive correlation between the NOE and pH was observed. CONCLUSION: Associations of NOEs with tissue pathology were found using the 4-pool metric that were not observed using the 3-pool approximation. The 4-pool model more adequately captured in vivo changes in NOEs and revealed trends depending on tissue pathology in stroke.


Subject(s)
Ischemic Stroke , Stroke , Animals , Humans , Ischemia , Magnetic Resonance Imaging/methods , Mice , Protons , Retrospective Studies , Stroke/diagnostic imaging
12.
Magn Reson Med ; 88(2): 880-889, 2022 08.
Article in English | MEDLINE | ID: mdl-35344622

ABSTRACT

PURPOSE: 3D time-of-flight MRA can accurately visualize the intracranial vasculature but is limited by long acquisition times. Compressed sensing reconstruction can be used to substantially accelerate acquisitions. The quality of those reconstructions depends on the undersampling patterns used. In this work, we optimize sets of undersampling parameters for various acceleration factors of Cartesian 3D time-of-flight MRA. METHODS: Fully sampled datasets, acquired at 7 Tesla, were retrospectively undersampled using variable-density Poisson disk sampling with various autocalibration region sizes, polynomial orders, and acceleration factors. The accuracy of reconstructions from the different undersampled datasets was assessed using the vessel-masked structural similarity index. Identified optimal undersampling parameters were then evaluated in additional prospectively undersampled datasets. Compressed sensing reconstruction parameters were chosen based on a preliminary reconstruction parameter optimization. RESULTS: For all acceleration factors, using a fully sampled calibration area of 12 × 12 k-space lines and a polynomial order of 2 resulted in the highest image quality. The importance of parameter optimization of the sampling was found to increase for higher acceleration factors. The results were consistent across resolutions and regions of interest with vessels of varying sizes and tortuosity. The number of visible small vessels increased by 7.0% and 14.2% when compared to standard parameters for acceleration factors of 7.2 and 15, respectively. CONCLUSION: The image quality of compressed sensing time-of-flight MRA can be improved by appropriate choice of undersampling parameters. The optimized sets of parameters are independent of the acceleration factor and enable a larger number of vessels to be visualized.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Acceleration , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Retrospective Studies
13.
Magn Reson Med ; 87(1): 446-456, 2022 01.
Article in English | MEDLINE | ID: mdl-34331470

ABSTRACT

PURPOSE: Quantitative magnetization transfer (qMT) imaging can be used to quantify the proportion of protons in a voxel attached to macromolecules. Here, we show that the original qMT balanced steady-state free precession (bSSFP) model is biased due to over-simplistic assumptions made in its derivation. THEORY AND METHODS: We present an improved model for qMT bSSFP, which incorporates finite radiofrequency (RF) pulse effects as well as simultaneous exchange and relaxation. Furthermore, a correction relating to finite RF pulse effects for sinc-shaped excitations is derived. The new model is compared to the original one in numerical simulations of the Bloch-McConnell equations and in previously acquired in vivo data. RESULTS: Our numerical simulations show that the original signal equation is significantly biased in typical brain tissue structures (by 7%-20%), whereas the new signal equation outperforms the original one with minimal bias (<1%). It is further shown that the bias of the original model strongly affects the acquired qMT parameters in human brain structures, with differences in the clinically relevant parameter of pool-size-ratio of up to 31%. Particularly high biases of the original signal equation are expected in an MS lesion within diseased brain tissue (due to a low T2/T1-ratio), demanding a more accurate model for clinical applications. CONCLUSION: The improved model for qMT bSSFP is recommended for accurate qMT parameter mapping in healthy and diseased brain tissue structures.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Heart Rate , Humans , Radio Waves
14.
Magn Reson Med ; 87(4): 1846-1862, 2022 04.
Article in English | MEDLINE | ID: mdl-34817081

ABSTRACT

PURPOSE: We investigate the influence of moving blood-attenuation effects when using "delay alternating with nutation for tailored excitation" (DANTE) pulses in conjunction with blood oxygen level dependent (BOLD) of functional MRI (fMRI) at 3 T. Based on the effects of including DANTE pulses, we propose quantification of cerebral blood volume (CBV) changes following functional stimulation. METHODS: Eighteen volunteers in total underwent fMRI scans at 3 T. Seven volunteers were scanned to investigate the effects of DANTE pulses on the fMRI signal. CBV changes in response to visual stimulation were quantified in 11 volunteers using a DANTE-prepared dual-echo EPI sequence. RESULTS: The inflow effects from flowing blood in arteries and draining vein effects from flowing blood in large veins can be suppressed by use of a DANTE preparation module. Using DANTE-prepared dual-echo EPI, we quantitatively measured intravascular-weighted microvascular CBV changes of 25.4%, 29.8%, and 32.6% evoked by 1, 5, and 10 Hz visual stimulation, respectively. The extravascular fraction (∆S/S)extra at TE = 30 ms in total BOLD signal was determined to be 64.8 ± 3.4%, which is in line with previous extravascular component estimation at 3 T. Results show that the microvascular CBV changes are linearly dependent on total BOLD changes at TE = 30 ms with a slope of 0.113, and this relation is independent of stimulation frequency and subject. CONCLUSION: The DANTE preparation pulses can be incorporated into a standard EPI fMRI sequence for the purpose of minimizing inflow effects and reducing draining veins effects in large vessels. Additionally, the DANTE-prepared dual-echo EPI sequence is a promising fast imaging tool for quantification of intravascular-weighted CBV change in the microvascular space at 3 T.


Subject(s)
Cerebral Blood Volume , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cerebrovascular Circulation/physiology , Humans , Magnetic Resonance Imaging/methods , Photic Stimulation
15.
Sci Rep ; 11(1): 23245, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853362

ABSTRACT

The first 72 h following aneurysm rupture play a key role in determining clinical and cognitive outcomes after subarachnoid haemorrhage (SAH). Yet, very little is known about the impact of so called "early brain injury" on patents with clinically good grade SAH (as defined as World Federation of Neurosurgeons Grade 1 and 2). 27 patients with good grade SAH underwent MRI scanning were prospectively recruited at three time-points after SAH: within the first 72 h (acute phase), at 5-10 days and at 3 months. Patients underwent additional, comprehensive cognitive assessment 3 months post-SAH. 27 paired healthy controls were also recruited for comparison. In the first 72 h post-SAH, patients had significantly higher global and regional brain volume than controls. This change was accompanied by restricted water diffusion in patients. Persisting abnormalities in the volume of the posterior cerebellum at 3 months post-SAH were present to those patients with worse cognitive outcome. When using this residual abnormal brain area as a region of interest in the acute-phase scans, we could predict with an accuracy of 84% (sensitivity 82%, specificity 86%) which patients would develop cognitive impairment 3 months later, despite initially appearing clinically indistinguishable from those making full recovery. In an exploratory sample of good clinical grade SAH patients compared to healthy controls, we identified a region of the posterior cerebellum for which acute changes on MRI were associated with cognitive impairment. Whilst further investigation will be required to confirm causality, use of this finding as a risk stratification biomarker is promising.


Subject(s)
Brain Injuries/pathology , Cognitive Dysfunction/complications , Subarachnoid Hemorrhage/pathology , Adult , Aged , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/pathology , Brain Injuries/complications , Brain Injuries/diagnostic imaging , Case-Control Studies , Cerebellum/diagnostic imaging , Cerebellum/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging
16.
Front Neurol ; 12: 753284, 2021.
Article in English | MEDLINE | ID: mdl-34777224

ABSTRACT

SARS-CoV-2 infection has been shown to damage multiple organs, including the brain. Multiorgan MRI can provide further insight on the repercussions of COVID-19 on organ health but requires a balance between richness and quality of data acquisition and total scan duration. We adapted the UK Biobank brain MRI protocol to produce high-quality images while being suitable as part of a post-COVID-19 multiorgan MRI exam. The analysis pipeline, also adapted from UK Biobank, includes new imaging-derived phenotypes (IDPs) designed to assess the possible effects of COVID-19. A first application of the protocol and pipeline was performed in 51 COVID-19 patients post-hospital discharge and 25 controls participating in the Oxford C-MORE study. The protocol acquires high resolution T1, T2-FLAIR, diffusion weighted images, susceptibility weighted images, and arterial spin labelling data in 17 min. The automated imaging pipeline derives 1,575 IDPs, assessing brain anatomy (including olfactory bulb volume and intensity) and tissue perfusion, hyperintensities, diffusivity, and susceptibility. In the C-MORE data, IDPs related to atrophy, small vessel disease and olfactory bulbs were consistent with clinical radiology reports. Our exploratory analysis tentatively revealed some group differences between recovered COVID-19 patients and controls, across severity groups, but not across anosmia groups. Follow-up imaging in the C-MORE study is currently ongoing, and this protocol is now being used in other large-scale studies. The protocol, pipeline code and data are openly available and will further contribute to the understanding of the medium to long-term effects of COVID-19.

17.
Front Physiol ; 12: 643725, 2021.
Article in English | MEDLINE | ID: mdl-33868011

ABSTRACT

BACKGROUND: It is well-established that what is good for the heart is good for the brain. Vascular factors such as hypertension, diabetes, and high cholesterol, and genetic factors such as the apolipoprotein E4 allele increase the risk of developing both cardiovascular disease and dementia. However, the mechanisms underlying the heart-brain association remain unclear. Recent evidence suggests that impairments in vascular phenotypes and cerebrovascular reactivity (CVR) may play an important role in cognitive decline. The Heart and Brain Study combines state-of-the-art vascular ultrasound, cerebrovascular magnetic resonance imaging (MRI) and cognitive testing in participants of the long-running Whitehall II Imaging cohort to examine these processes together. This paper describes the study protocol, data pre-processing and overarching objectives. METHODS AND DESIGN: The 775 participants of the Whitehall II Imaging cohort, aged 65 years or older in 2019, have received clinical and vascular risk assessments at 5-year-intervals since 1985, as well as a 3T brain MRI scan and neuropsychological tests between 2012 and 2016 (Whitehall II Wave MRI-1). Approximately 25% of this cohort are selected for the Heart and Brain Study, which involves a single testing session at the University of Oxford (Wave MRI-2). Between 2019 and 2023, participants will undergo ultrasound scans of the ascending aorta and common carotid arteries, measures of central and peripheral blood pressure, and 3T MRI scans to measure CVR in response to 5% carbon dioxide in air, vessel-selective cerebral blood flow (CBF), and cerebrovascular lesions. The structural and diffusion MRI scans and neuropsychological battery conducted at Wave MRI-1 will also be repeated. Using this extensive life-course data, the Heart and Brain Study will examine how 30-year trajectories of vascular risk throughout midlife (40-70 years) affect vascular phenotypes, cerebrovascular health, longitudinal brain atrophy and cognitive decline at older ages. DISCUSSION: The study will generate one of the most comprehensive datasets to examine the longitudinal determinants of the heart-brain association. It will evaluate novel physiological processes in order to describe the optimal window for managing vascular risk in order to delay cognitive decline. Ultimately, the Heart and Brain Study will inform strategies to identify at-risk individuals for targeted interventions to prevent or delay dementia.

18.
EClinicalMedicine ; 31: 100683, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33490928

ABSTRACT

BACKGROUND: The medium-term effects of Coronavirus disease (COVID-19) on organ health, exercise capacity, cognition, quality of life and mental health are poorly understood. METHODS: Fifty-eight COVID-19 patients post-hospital discharge and 30 age, sex, body mass index comorbidity-matched controls were enrolled for multiorgan (brain, lungs, heart, liver and kidneys) magnetic resonance imaging (MRI), spirometry, six-minute walk test, cardiopulmonary exercise test (CPET), quality of life, cognitive and mental health assessments. FINDINGS: At 2-3 months from disease-onset, 64% of patients experienced breathlessness and 55% reported fatigue. On MRI, abnormalities were seen in lungs (60%), heart (26%), liver (10%) and kidneys (29%). Patients exhibited changes in the thalamus, posterior thalamic radiations and sagittal stratum on brain MRI and demonstrated impaired cognitive performance, specifically in the executive and visuospatial domains. Exercise tolerance (maximal oxygen consumption and ventilatory efficiency on CPET) and six-minute walk distance were significantly reduced. The extent of extra-pulmonary MRI abnormalities and exercise intolerance correlated with serum markers of inflammation and acute illness severity. Patients had a higher burden of self-reported symptoms of depression and experienced significant impairment in all domains of quality of life compared to controls (p<0.0001 to 0.044). INTERPRETATION: A significant proportion of patients discharged from hospital reported symptoms of breathlessness, fatigue, depression and had limited exercise capacity. Persistent lung and extra-pulmonary organ MRI findings are common in patients and linked to inflammation and severity of acute illness. FUNDING: NIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation.

19.
Magn Reson Imaging ; 77: 57-68, 2021 04.
Article in English | MEDLINE | ID: mdl-33359425

ABSTRACT

We propose a workflow for validating parallel transmission (pTx) radio-frequency (RF) magnetic field heating patterns using Proton-Resonance Frequency shift (PRF)-based MR thermometry. Electromagnetic (EM) and thermal simulations of a 7 T 8-channel dipole coil were done using commercially available software (Sim4Life) to assess RF heating. The fabrication method for a phantom with electrical properties matched to human tissue is also described, along with methods for its electrical and thermal characterisation. Energy was deposited to specific transmit channels, whilst acquiring 3D PRF data using a pair of interleaved RF shim transmit modes. A multi-echo readout and pre-scan stabilisation protocol were used for increased sensitivity and to correct for measurement-to-measurement instabilities. The electrical properties of the phantom were found to be within 10% of the intended values. Adoption of a 14-min stabilisation scan gave sufficient suppression of any evolving background spatial variation in the B0 field to achieve <0.001 °C/mm thermometry drift over 10 min of subsequent scanning. Using two RF shim transmit modes enabled full phantom coverage and combining multiple echo times enabled a 13-54% improvement in the RMSE sensitivity to temperature changes. Combining multiple echoes reduced the peak RMSE by 45% and visually reduced measurement-to-measurement instabilities. A reference fibre optic probe showed temperature deviations from the PRF-estimated temperature to be smaller than 0.5 °C. Given the importance of RF safety in pTx applications, this workflow enables accurate validation of RF heating simulations with minimal additional hardware requirements.


Subject(s)
Hot Temperature , Magnetic Resonance Imaging , Phantoms, Imaging , Protons , Radio Waves , Thermometry/instrumentation , Humans
20.
Magn Reson Med ; 85(2): 1114-1122, 2021 02.
Article in English | MEDLINE | ID: mdl-32845034

ABSTRACT

PURPOSE: Safety limits for the permitted specific absorption rate (SAR) place restrictions on pulse sequence design, especially at ultrahigh fields (≥ 7 tesla). Due to intersubject variability, the SAR is usually conservatively estimated based on standard human models that include an applied safety margin to ensure safe operation. One approach to reducing the restrictions is to create more accurate subject-specific models from their segmented MR images. This study uses electromagnetic simulations to investigate the minimum number of tissue groups required to accurately determine SAR in the human head. METHODS: Tissue types from a fully characterized electromagnetic human model with 47 tissue types in the head and neck region were grouped into different tissue clusters based on the conductivities, permittivities, and mass densities of the tissues. Electromagnetic simulations of the head model inside a parallel transmit head coil at 7 tesla were used to determine the minimum number of required tissue clusters to accurately determine the subject-specific SAR. The identified tissue clusters were then evaluated using 2 additional well-characterized electromagnetic human models. RESULTS: A minimum of 4-clusters-plus-air was found to be required for accurate SAR estimation. These tissue clusters are centered around gray matter, fat, cortical bone, and cerebrospinal fluid. For all 3 simulated models, the parallel transmit maximum 10g SAR was consistently determined to within an error of <12% relative to the full 47-tissue model. CONCLUSION: A minimum of 4-clusters-plus-air are required to produce accurate personalized SAR simulations of the human head when using parallel transmit at 7 tesla.


Subject(s)
Head , Magnetic Resonance Imaging , Computer Simulation , Electromagnetic Fields , Head/diagnostic imaging , Humans , Phantoms, Imaging , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...