Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 582(7810): 104-108, 2020 06.
Article in English | MEDLINE | ID: mdl-32427965

ABSTRACT

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Subject(s)
Apoptosis/immunology , Intercellular Signaling Peptides and Proteins/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Parasites/immunology , Plasmodium falciparum/cytology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Aotidae/immunology , Aotidae/parasitology , Caspases/metabolism , Child , Cohort Studies , DNA, Protozoan/chemistry , DNA, Protozoan/metabolism , Enzyme Activation , Erythrocytes/parasitology , Female , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Kenya , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Male , Mice , Parasites/cytology , Parasites/growth & development , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Tanzania , Trophozoites/cytology , Trophozoites/growth & development , Trophozoites/immunology , Vacuoles/immunology
2.
Clin Infect Dis ; 68(10): 1718-1724, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30165569

ABSTRACT

BACKGROUND: In holoendemic areas, children suffer the most from Plasmodium falciparum malaria, yet newborns and young infants express a relative resistance to both infection and severe malarial disease (SM). This relative resistance has been ascribed to maternally-derived anti-parasite immunoglobulin G; however, the targets of these protective antibodies remain elusive. METHODS: We enrolled 647 newborns at birth from a malaria-holoendemic region of Tanzania. We collected cord blood, measured antibodies to Plasmodium falciparum Schizont Egress Antigen-1 (PfSEA-1), and related these antibodies to the risk of severe malaria in the first year of life. In addition, we vaccinated female mice with PbSEA-1, mated them, and challenged their pups with P. berghei ANKA parasites to assess the impact of maternal PbSEA-1 vaccination on newborns' resistance to malaria. RESULTS: Children with high cord-blood anti-PfSEA-1 antibody levels had 51.4% fewer cases of SM compared to individuals with lower anti-PfSEA-1 levels over 12 months of follow-up (P = .03). In 3 trials, pups born to PbSEA-1-vaccinated dams had significantly lower parasitemia and longer survival following a P. berghei challenge compared to pups born to control dams. CONCLUSIONS: We demonstrate that maternally-derived, cord-blood anti-PfSEA-1 antibodies predict decreased risk of SM in infants and vaccination of mice with PbSEA-1 prior to pregnancy protects their offspring from lethal P. berghei challenge. These results identify, for the first time, a parasite-specific target of maternal antibodies that protect infants from SM and suggest that vaccination of pregnant women with PfSEA-1 may afford a survival advantage to their offspring.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Fetal Blood/immunology , Immunity, Maternally-Acquired , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Severity of Illness Index , Animals , Antigens, Protozoan/administration & dosage , Cohort Studies , Disease Resistance , Female , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Parasitemia/immunology , Parasitemia/prevention & control , Plasmodium berghei/immunology , Plasmodium falciparum , Protozoan Proteins/administration & dosage , Tanzania , Vaccination
3.
J Infect Dis ; 218(11): 1792-1801, 2018 10 20.
Article in English | MEDLINE | ID: mdl-29982707

ABSTRACT

Background: Antigametocyte-specific immune responses may regulate Plasmodium falciparum gametocyte density, providing the rationale for pursuing transmission-blocking vaccines (TBVs) that target gametocytes in the human host. Methods: To identify novel antigametocyte TBV antigens, we interrogated the gametocyte proteome with our whole proteome differential screening method using plasma from a treatment-reinfection study conducted in western Kenya. At the start of the high-transmission season, 144 males (12-35 years) were enrolled and treated with quinine and doxycycline, peripheral venous blood samples were obtained, volunteers were observed, and weekly blood films were obtained for 18 weeks to quantify gametocytemia. Using plasma pooled from individuals with low versus high gametocyte carriage, we differentially screened a P falciparum gametocyte stage complementary deoxyribonucleic acid expression library. Results: We identified 8 parasite genes uniquely recognized by gametocyte-resistant but not by gametocyte-susceptible individuals. Antibodies to one of these antigens, PfsEGXP, predicted lower gametocytemia measured over the 18-week transmission season (P = .021). When analyzed dichotomously, anti-PfsEGXP responders had 31% lower gametocyte density over 18 weeks of follow-up, compared with nonresponders (P = .04). Conclusions: PfsEGXP is one of the first reported gametocyte-specific target of antibodies that predict decreased gametocyte density in humans and supports our novel TBV antigen discovery platform.


Subject(s)
Antibodies, Protozoan/immunology , Disease Susceptibility/immunology , Malaria, Falciparum , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/metabolism , Child , Humans , Life Cycle Stages/immunology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Mice , Mice, Inbred BALB C , Parasite Load , Phosphoproteins/genetics , Phosphoproteins/immunology , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...