Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 368(6495): 1135-1140, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32499444

ABSTRACT

Determining where an object has been is a fundamental challenge for human health, commerce, and food safety. Location-specific microbes in principle offer a cheap and sensitive way to determine object provenance. We created a synthetic, scalable microbial spore system that identifies object provenance in under 1 hour at meter-scale resolution and near single-spore sensitivity and can be safely introduced into and recovered from the environment. This system solves the key challenges in object provenance: persistence in the environment, scalability, rapid and facile decoding, and biocontainment. Our system is compatible with SHERLOCK, a Cas13a RNA-guided nucleic acid detection assay, facilitating its implementation in a wide range of applications.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Bacterial/isolation & purification , DNA, Fungal/isolation & purification , Environmental Microbiology , Microbiota/genetics , Spores/genetics , CRISPR-Cas Systems , DNA, Bacterial/genetics , DNA, Fungal/genetics , RNA, Guide, Kinetoplastida
2.
EMBO Rep ; 18(1): 87-101, 2017 01.
Article in English | MEDLINE | ID: mdl-27920033

ABSTRACT

Mitochondrial-nuclear incompatibility has a major role in reproductive isolation between species. However, the underlying mechanism and driving force of mitochondrial-nuclear incompatibility remain elusive. Here, we report a pentatricopeptide repeat-containing (PPR) protein, Ccm1, and its interacting partner, 15S rRNA, to be involved in hybrid incompatibility between two yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus S. bayanus-Ccm1 has reduced binding affinity for S. cerevisiae-15S rRNA, leading to respiratory defects in hybrid cells. This incompatibility can be rescued by single mutations on several individual PPR motifs, demonstrating the highly evolvable nature of PPR proteins. When we examined other PPR proteins in the closely related Saccharomyces sensu stricto yeasts, about two-thirds of them showed detectable incompatibility. Our results suggest that fast co-evolution between flexible PPR proteins and their mitochondrial RNA substrates may be a common driving force in the development of mitochondrial-nuclear hybrid incompatibility.


Subject(s)
Cell Nucleus/metabolism , Fungal Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Amino Acid Sequence , Cell Nucleus/genetics , Chromosomes, Fungal , Fungal Proteins/chemistry , Fungal Proteins/genetics , Genome, Fungal , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Models, Molecular , Mutation , Peptides , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA , RNA, Mitochondrial , RNA, Ribosomal , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...