Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Adv Mater ; 36(8): e2311255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030137

ABSTRACT

Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.


Subject(s)
Dehydration , Hydrogels , Humans , Skin , Electric Conductivity , Salts
2.
Nucleic Acids Res ; 52(D1): D98-D106, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953349

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species. After previous releases in 2018 and 2021, this update marks a major expansion through exhaustive manual curation of nearly 25 000 publications from 15 May 2020, to 15 May 2023. It incorporates substantial growth across all categories: a 154% increase in functional lncRNAs, 160% in associated diseases, 186% in lncRNA-disease associations, 235% in interactions, 138% in structures, 234% in circular RNAs, 235% in resistant lncRNAs and 4724% in exosomal lncRNAs. More importantly, it incorporated additional information include functional classifications, detailed interaction pathways, homologous lncRNAs, lncRNA locations, COVID-19, phase-separation and organoid-related lncRNAs. The web interface was substantially improved for browsing, visualization, and searching. ChatGPT was tested for information extraction and functional overview with its limitation noted. EVLncRNAs 3.0 represents the most extensive curated resource of experimentally validated functional lncRNAs and will serve as an indispensable platform for unravelling emerging lncRNA functions. The updated database is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs3/.


Subject(s)
Databases, Nucleic Acid , RNA, Long Noncoding , Data Management , Information Storage and Retrieval , RNA, Long Noncoding/genetics
3.
Cell Rep ; 42(12): 113472, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37999975

ABSTRACT

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Subject(s)
DNA, Mitochondrial , Mitochondria , Mitochondria/genetics , DNA, Mitochondrial/genetics , Mitochondrial Membranes , Mitochondrial Dynamics/genetics , Mitochondrial Proteins
4.
bioRxiv ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37786707

ABSTRACT

Structured illumination microscopy (SIM) is a versatile super-resolution technique known for its compatibility with a wide range of probes and fast implementation. While 3D SIM is capable of achieving a spatial resolution of ∼120 nm laterally and ∼300 nm axially, attempting to further enhance the resolution through methods such as nonlinear SIM or 4-beam SIM introduces complexities in optical configurations, increased phototoxicity, and reduced temporal resolution. Here, we have developed a novel method that combines SIM with augmented super-resolution radial fluctuations (aSRRF) utilizing a single image through image augmentation. By applying aSRRF reconstruction to SIM images, we can enhance the SIM resolution to ∼50 nm isotopically, without requiring any modifications to the optical system or sample acquisition process. Additionaly, we have incorporated the aSRRF approach into an ImageJ plugin and demonstrated its versatility across various fluorescence microscopy images, showcasing a remarkable two-fold resolution increase.

5.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37622381

ABSTRACT

Emerging pathogen infections, such as Zika virus (ZIKV), pose an increasing threat to human health, but the role of mechanobiological attributes of host cells during ZIKV infection is largely unknown. Here, we reveal that ZIKV infection leads to increased contractility of host cells. Importantly, we investigated whether host cell contractility contributes to ZIKV infection efficacy, from both the intracellular and extracellular perspective. By performing drug perturbation and gene editing experiments, we confirmed that disruption of contractile actomyosin compromises ZIKV infection efficiency, viral genome replication and viral particle production. By culturing on compliant matrix, we further demonstrate that a softer substrate, leading to less contractility of host cells, compromises ZIKV infection, which resembles the effects of disrupting intracellular actomyosin organization. Together, our work provides evidence to support a positive correlation between host cell contractility and ZIKV infection efficacy, thus unveiling an unprecedented layer of interplay between ZIKV and the host cell.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Actomyosin , Actin Cytoskeleton , Biophysics
6.
Curr Biol ; 33(16): 3371-3388.e7, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37494937

ABSTRACT

The molecular mechanism underlying asymmetric axonemal complexes in sperm flagella is still largely unknown. Here, we showed that the knockout of the coiled-coil domain-containing 176 (CCDC176) in mice led to male infertility due to decreased sperm motility. Ccdc176 knockout specifically destabilized microtubule doublets (MTDs) 1 and 9 during sperm maturation in the corpus epididymis. Single-sperm immunofluorescence showed that most CCDC176 was distributed along the axoneme, and further super-resolution imaging revealed that CCDC176 is asymmetrically localized in the sperm axoneme. CCDC176 could cooperate with microtubule and radial spoke proteins to stabilize MTDs 1 and 9, and its knockout results in the destabilization of some proteins in sperm flagella. Furthermore, as predicted by the sperm multibody dynamics (MBD) model, we found that MTDs 1 and 9 jutted out from the sperm flagellum annulus region in Ccdc176-/- spermatozoa, and these flagellar defects alter sperm flagellar beat patterns and swimming paths, potentially owing to the reduction and disequilibration of bending torque on the central pair. These results demonstrate that CCDC176 specifically stabilizes MTDs 1 and 9 in the sperm flagellum to ensure proper sperm movement for fertilization.


Subject(s)
Semen , Sperm Motility , Male , Animals , Mice , Sperm Tail/metabolism , Spermatozoa , Flagella , Microtubules , Axoneme
7.
Nat Commun ; 14(1): 3758, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353497

ABSTRACT

Phosphodiesterase type 5 inhibitors (PDE5is) constitute the primary therapeutic option for treating erectile dysfunction (ED). Nevertheless, a substantial proportion of patients, approximately 30%, do not respond to PDE5i treatment. Therefore, new treatment methods are needed. In this study, we identified a pathway that contributes to male erectile function. We show that mechano-regulated YAP/TAZ signaling in smooth muscle cells (SMCs) upregulates adrenomedullin transcription, which relaxed the SMCs to maintain erection. Using single-nucleus RNA sequencing, we investigated how penile erection stretches the SMCs, inducing YAP/TAZ activity. Subsequently, we demonstrate that YAP/TAZ plays a role in erectile function and penile rehabilitation, using genetic lesions and various animal models. This mechanism relies on direct transcriptional regulation of adrenomedullin by YAP/TAZ, which in turn modulates penile smooth muscle contraction. Importantly, conventional PDE5i, which targets NO-cGMP signaling, does not promote erectile function in YAP/TAZ-deficient ED model mice. In contrast, by activating the YAP/TAZ-adrenomedullin cascade, mechanostimulation improves erectile function in PDE5i nonrespondent ED model rats and mice. Furthermore, using clinical retrospective observational data, we found that mechanostimulation significantly promotes erectile function in patients irrespective of PDE5i use. Our studies lay the groundwork for exploring the mechano-YAP/TAZ-adrenomedullin axis as a potential target in the treatment of ED.


Subject(s)
Adrenomedullin , Erectile Dysfunction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Animals , Humans , Male , Mice , Rats , Adrenomedullin/physiology , Erectile Dysfunction/genetics , Penile Erection/physiology , Penis , Retrospective Studies , YAP-Signaling Proteins/physiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/physiology
8.
Adv Mater ; 35(29): e2301290, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37151164

ABSTRACT

Myoelectric control utilizes electrical signals generated from the voluntary contraction of remaining muscles in an amputee's stump to operate a prosthesis. Precise and agile control requires low-level myoelectric signals (below 10% of maximum voluntary contraction, MVC) from weak muscle contractions such as phantom finger or wrist movements, but imbalanced calcium concentration in atrophic skin can distort the signals. This is due to poor ionic-electronic coupling between skin and electrode, which often causes excessive muscle contraction, fatigue, and discomfort during delicate tasks. To overcome this challenge, a new strategy called molecular anchoring is developed to drive hydrophobic molecular effectively interact with and embed into stratum corneum for high coupling regions between ionic fluxes and electronic currents. The use of hydrophobic poly(N-vinyl caprolactam) gel has resulted in an interface impedance of 20 kΩ, which is 1/100 of a commercial acrylic-based electrode, allowing the detection of ultralow myoelectric signals (≈1.5% MVC) that approach human limits. With this molecular anchoring technology, amputees operate a prosthesis with greater dexterity, as phantom finger and wrist movements are predicted with 97.6% accuracy. This strategy provides the potential for a comfortable human-machine interface when amputees accomplish day-to-day tasks through precise and dexterous myoelectric control.


Subject(s)
Amputees , Artificial Limbs , Humans , Electromyography/methods , Muscles , Muscle Contraction/physiology
9.
J Mol Biol ; 435(13): 168089, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37030649

ABSTRACT

SNARE is the essential mediator of membrane fusion that highly relies on the molecular structure of SNAREs. For instance, the protein syntaxin-1 involved in neuronal SNAREs, has a single transmembrane domain (sTMD) leading to fast fusion, while the syntaxin 17 has a V-shape double TMDs (dTMDs), taking part in the autophagosome maturation. However, it is not clear how the TMD structure influences the fusion process. Here, we demonstrate that the dTMDs significantly reduce fusion rate compared with the sTMD by using an in vitro reconstitution system. Through theoretical analysis, we reveal that the V-shape dTMDs can significantly increase protein-lipid mismatch, thereby raising the energy barrier of the fusion, and that increasing the number of SNAREs can reduce the energy barrier or protein-lipid mismatch. This study provides a physicochemical mechanistic understanding of SNARE-regulated membrane fusion.


Subject(s)
Membrane Fusion , SNARE Proteins , SNARE Proteins/genetics , SNARE Proteins/metabolism , Protein Domains , Mutation , Lipids
10.
Biophys J ; 122(12): 2404-2420, 2023 06 20.
Article in English | MEDLINE | ID: mdl-36966361

ABSTRACT

Wound closure is a fundamental process in many physiological and pathological processes, but the regulating effects of external force on the closure process are still unclear. Here, we systematically studied the closure process of wounds of different shape under cyclic stretching. We found that the stretching amplitude and direction had significant effect on the healing speed and healing mode. For instance, there was a biphasic dependence of the healing speed on the stretching amplitude. That is, the wound closure was faster under relatively small and large amplitude, while it was slower under intermediate amplitude. At the same time, the stretching could regulate the healing pattern. We showed that the stretching would increase the healing speed along the direction perpendicular to the stretching direction. Specifically, when the stretching was along the major axis of the wound, it accelerated the healing speed along the short axis, which induced a rosette to stitching-line mode transition. In contrast, stretching along the minor axis accelerated the healing speed along the long axis, inducing a stitching-line to rosette mode transition. Our theoretical analyses demonstrated that the wound closure process was coregulated by the mechanical factors including prestress in the cytoskeleton, the protrusion of cells, and the contraction of the actin ring, as well as the geometry of the wound. The cyclic stretch could further modulate the roles of these factors. For example, the stretching changed the stress field in the cell layer, and switched the direction of cell protrusions. This article reveals important cellular mechanisms of the wound healing process under cyclic stretching, and provides an insight into possible approaches of regulating cell collective behaviors via mechanical forces.


Subject(s)
Wound Healing , Madin Darby Canine Kidney Cells , Animals , Dogs , Biomechanical Phenomena , Wounds and Injuries/pathology , Time , Cell Polarity , Tensile Strength
11.
Proc Natl Acad Sci U S A ; 120(13): e2221432120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943889

ABSTRACT

It is known that external mechanical forces can regulate structures and functions of living cells and tissues in physiology and diseases. However, after cessation of the force, how structures are altered in response to the dynamics of the chromatin and molecules in the nucleoplasm remains elusive. Here, using single-molecule imaging approaches, we show that exogenous local forces via integrins applied for 2 to 10 min decondensed the chromatin and increased chromatin and nucleoplasm protein mobility inside the nucleus, leading to elevated diffusivity of single protein molecules in the nucleoplasm, tens of minutes after the cessation of force. Diffusion experiments with fluorescence correlation spectroscopy in live single cells show that the mechanomemory in chromatin and nucleoplasm protein diffusivity was regulated by nuclear pore complexes. Protein molecular dynamics simulation recapitulated the experimental findings in live cells and showed that nucleoplasm protein diffusivity was regulated by the number of nuclear pore complexes. The mechanomemory in elevated protein diffusivity of the nucleoplasm after force cessation represents a physical process that reverses protein-protein condensation in phase separation via unjamming of the chromatin. Our findings of mechanomemory in chromatin and nucleoplasm protein diffusivity suggest that the effect of force on the nucleus remains tens of minutes after force cessation and thus is more far-reaching than previously anticipated.


Subject(s)
Cell Nucleus , Chromatin , Chromatin/metabolism , Cell Nucleus/metabolism , Nuclear Pore/metabolism
12.
Adv Sci (Weinh) ; 10(11): e2205878, 2023 04.
Article in English | MEDLINE | ID: mdl-36775872

ABSTRACT

Blindness caused by corneal damage affects millions of people worldwide, and this number continues to rise. However, rapid epithelization and a stable epithelium process are the two biggest challenges for traditional corneal materials. These processes are related to corneal curvature, which is an important factor in determination of the corneal healing process and epithelial behavior during corneal damage. In this study, smooth 3D-printed convex corneal implants based on gelatin methacrylate and collagen are generated. As epithelium distribution and adhesion vary in different regions of the natural cornea, this work separates the surfaces into four regions and studies how cells sense topological cues on curvature. It is found that rabbit corneal epithelial cells (RCECs) seeded on steeper slope gradient surfaces on convex structures result in more aligned cell organization and tighter cell-substrate adhesion, which can also be verified through finite element simulation and signaling pathway analysis. In vivo transplantation of convex implants result in a better fit with adjacent tissue and stronger cell adhesion than flat implants, thereby accelerating corneal epithelialization and promoting collagen fibers and neural regeneration within 180 days. Taken together, printed convex corneal implants that facilitate corneal regeneration may offer a translational strategy for the treatment of corneal damage.


Subject(s)
Biomimetics , Corneal Injuries , Animals , Rabbits , Cornea/surgery , Collagen , Tissue Scaffolds/chemistry , Nerve Regeneration , Printing, Three-Dimensional
13.
ACS Nano ; 17(5): 4716-4728, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36848459

ABSTRACT

With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.


Subject(s)
Molybdenum , Nanostructures , Humans , Molybdenum/toxicity , Molybdenum/chemistry , Ecosystem , Mitophagy , Mitochondria , Nanostructures/chemistry , Lipids
14.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36573492

ABSTRACT

Long non-coding RNAs (lncRNAs) played essential roles in nearly every biological process and disease. Many algorithms were developed to distinguish lncRNAs from mRNAs in transcriptomic data and facilitated discoveries of more than 600 000 of lncRNAs. However, only a tiny fraction (<1%) of lncRNA transcripts (~4000) were further validated by low-throughput experiments (EVlncRNAs). Given the cost and labor-intensive nature of experimental validations, it is necessary to develop computational tools to prioritize those potentially functional lncRNAs because many lncRNAs from high-throughput sequencing (HTlncRNAs) could be resulted from transcriptional noises. Here, we employed deep learning algorithms to separate EVlncRNAs from HTlncRNAs and mRNAs. For overcoming the challenge of small datasets, we employed a three-layer deep-learning neural network (DNN) with a K-mer feature as the input and a small convolutional neural network (CNN) with one-hot encoding as the input. Three separate models were trained for human (h), mouse (m) and plant (p), respectively. The final concatenated models (EVlncRNA-Dpred (h), EVlncRNA-Dpred (m) and EVlncRNA-Dpred (p)) provided substantial improvement over a previous model based on support-vector-machines (EVlncRNA-pred). For example, EVlncRNA-Dpred (h) achieved 0.896 for the area under receiver-operating characteristic curve, compared with 0.582 given by sequence-based EVlncRNA-pred model. The models developed here should be useful for screening lncRNA transcripts for experimental validations. EVlncRNA-Dpred is available as a web server at https://www.sdklab-biophysics-dzu.net/EVlncRNA-Dpred/index.html, and the data and source code can be freely available along with the web server.


Subject(s)
Deep Learning , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , Computational Biology/methods , Software , Algorithms , RNA, Messenger/genetics
15.
Biophys Rep ; 9(4): 177-187, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-38516619

ABSTRACT

DNA-based point accumulation in nanoscale topography (DNA-PAINT) is a well-established technique for single-molecule localization microscopy (SMLM), enabling resolution of up to a few nanometers. Traditionally, DNA-PAINT involves the utilization of tens of thousands of single-molecule fluorescent images to generate a single super-resolution image. This process can be time-consuming, which makes it unfeasible for many researchers. Here, we propose a simplified DNA-PAINT labeling method and a deep learning-enabled fast DNA-PAINT imaging strategy for subcellular structures, such as microtubules. By employing our method, super-resolution reconstruction can be achieved with only one-tenth of the raw data previously needed, along with the option of acquiring the widefield image. As a result, DNA-PAINT imaging is significantly accelerated, making it more accessible to a wider range of biological researchers.

16.
ACS Nano ; 16(10): 16833-16842, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36194555

ABSTRACT

Shape reconfigurable devices, e.g., foldable phones, have emerged with the development of flexible electronics. But their rigid frames limit the feasible shapes for the devices. To achieve freely changeable shapes yet keep the rigidity of devices for user-friendly operations, stiffness-tunable materials are desired, especially under electrical control. However, current such systems are multilayer with at least a heater layer and a structural layer, leading to complex fabrication, high cost, and loss of reprocessability. Herein, we fabricate covalent adaptable networks-carbon nanotubes (CAN-CNT) composites to realize Joule heating controlled stiffness. The nanocomposites function as stiffness-tunable matrices, electric heaters, and softening sensors all by themselves. The self-reporting of softening is used to regulate the power control, and the sensing mechanism is investigated by simulating the CNT-polymer chain interactions at the nanoscale during the softening process. The nanocomposites not only have adjustable mechanical and thermodynamic properties but also are easy to fabricate at low cost and exhibit reprocessability and recyclability benefiting from the dynamic exchange reactions of CANs. Shape and stiffness control of flexible display systems are demonstrated with the nanocomposites as framing material, where freely reconfigurable shapes are realized to achieve convenient operation, wearing, or storage, fully exploiting their flexible potential.

17.
Med Nov Technol Devices ; 16: 100139, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35527852

ABSTRACT

Traditional Chinese Medicine (TCM) has played crucial roles in treating COVID-19 in China. But its effectiveness has not yet been widely realized/recognized over the world. We performed a systematic review and meta-analysis to investigate the clinical efficacy of TCM medicine in the treatment for COVID-19. We obtained the data of COVID-19 and traditional Chinese medicine from PubMed, MEDLINE, Web of Science and other databases, and searched from January 1, 2020 to January 26, 2022 to determine the randomized controlled trials (RCTs) without language restrictions. The review includes 26 randomized clinical trials including 2981 patients. The treatment of COVID-19 by TCM combined with conventional treatment is more effective than by pure conventional treatment in many aspects, including increasing of the effective rate [OR â€‹= â€‹2.47, 95%CI (1.85, 3.30), P â€‹< â€‹0.00001], fever disappearance rate [OR â€‹= â€‹3.68, 95%CI (1.95, 6.96), P â€‹< â€‹0.0001], fatigue disappearance rate [OR â€‹= â€‹3.15, 95%CI (1.60, 6.21), P â€‹= â€‹0.0009], cough disappearance rate [OR â€‹= â€‹2.89, 95%CI (1.84, 4.54), P â€‹< â€‹0.00001], expectoration disappearance rate [OR â€‹= â€‹5.94, 95%CI (1.98, 17.84), P â€‹= â€‹0.001], disappearance rate of shortness of breath [OR â€‹= â€‹2.57, 95%CI (1.13, 5.80), P â€‹= â€‹0.02], improvement rate of CT image [OR â€‹= â€‹2.43, 95%CI (1.86, 3.16), P â€‹< â€‹0.00001], and reduction of the hospitalization time [MD â€‹= â€‹-3.16, 95%CI (-3.75, -2.56), P â€‹< â€‹0.00001], and deterioration rate [OR â€‹= â€‹0.49, 95%CI (0.29, 0.83), P â€‹= â€‹0.007]. The findings of this meta-analysis suggest that TCM can effectively relieve symptoms, boosted patients' recovery, cut the rate of patients developing into severe conditions, and reduce the deterioration rate.

18.
J Cell Biol ; 221(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35179563

ABSTRACT

Migrasomes are recently discovered vesicle-like structures on retraction fibers of migrating cells that have been linked with transfer of cellular contents, shedding of unwanted materials, and information integration. However, whether and how the cell migration paradigm regulates migrasome formation is not clear. Here, we report that there are significantly fewer migrasomes in turning cells compared with straight persistently migrating cells. The major insight underlying this observation is that as the cells elongate, their rear ends become narrower, subsequently resulting in fewer retraction fibers during impersistent migration. In addition to migration persistence, we reveal that migration speed positively corelates with migrasome formation, owing to the derived length of retraction fibers. Substantiating our hypothesis, genetically removing vimentin compromises cell migration speed and persistence and leads to fewer migrasomes. Together, our data explicate the critical roles of two cell migration patterns, persistence and speed, in the control of migrasome formation by regulating retraction fibers.


Subject(s)
Cell Movement , Organelles/metabolism , Animals , Cell Line , Green Fluorescent Proteins/metabolism , Humans , Mice , Rats , Time-Lapse Imaging
19.
Biophys J ; 121(2): 288-299, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34902328

ABSTRACT

Wounds can be produced when cells and tissues are subjected to excessive forces, for instance, under pathological conditions or nonphysiological loading. However, the cellular behaviors in the wound formation process are not clear. Here we tested the behaviors of wound formation in the epithelial layer with an in-suit uniaxial stretching device. We found that the wound often nucleates at the position where the cells are dividing. The polarization direction of cells near the wound is preferentially along the wound edge, whereas the cells far from the wound are preferentially perpendicular to the stretching direction. The larger the wound area is, the higher is the aspect ratio of the cells around the wound. Increasing the cell density will strengthen the cell layer. The higher the cell density is, the smaller is the area of the wounds, and the weaker is the effect of stretching on the polarization of the cells. Furthermore, we built a coarse-grained cell model that can explicitly consider the elasticity and viscoelasticity of cells, cell-cell interaction, and cell active stress, by which we simulated the wound formation process and quantitatively analyzed the force and stress fields in the cell layer, particularly around the wound. These analyses reveal the cellular mechanisms of wound formation behaviors in the cell layer under stretching and shed useful light on tissue engineering and regenerative medicine for biomedical applications.


Subject(s)
Mechanical Phenomena , Tissue Engineering , Elasticity , Stress, Mechanical
20.
ACS Appl Mater Interfaces ; 13(23): 27687-27695, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34100284

ABSTRACT

Anisotropic superhydrophobic surfaces that have many superior properties, such as directional self-cleaning, droplet transport, heat transfer, and so on, are widely used in various fields. Different from symmetric surfaces, a water droplet often shows directional spreading, moving, and bouncing on asymmetric surfaces. To investigate the mechanisms and achieve controllability of droplet motions on asymmetric surfaces, a series of surfaces with inclined micro-conical arrays are fabricated by integrating the methods of soft lithography, hot-pressing, and crystal growth. We found that the droplet would spread along the reverse direction of micro-cone's orientation but bounce and detach off the surface and move toward the direction of micro-cone's orientation. To understand these interesting performances, a mathematical model is established from the perspective of force balance, and a series of numerical simulations are performed. Additionally, the relationship between the droplet motions and the micro-structural parameters, including the inclined angle, line space, and height, are studied. This work may provide useful insights into droplet controlling, anisotropic surface designing, and its applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...