Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 84(2): 244-260.e7, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38101414

ABSTRACT

Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.


Subject(s)
Biomolecular Condensates , Chromatin , Hepatocyte Nuclear Factor 3-alpha , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Heterochromatin , Humans
2.
Life Sci Alliance ; 6(10)2023 10.
Article in English | MEDLINE | ID: mdl-37429639

ABSTRACT

The histone demethylase Lsd1 has been shown to play multiple essential roles in mammalian biology. However, its physiological functions in thymocyte development remain elusive. We observed that the specific deletion of Lsd1 in thymocytes caused significant thymic atrophy and reduced peripheral T cell populations with impaired proliferation capacity. Single-cell RNA sequencing combined with strand-specific total RNA-seq and ChIP-seq analysis revealed that ablation of Lsd1 led to the aberrant derepression of endogenous retroelements, which resulted in a viral mimicry state and activated the interferon pathway. Furthermore, the deletion of Lsd1 blocked the programmed sequential down-regulation of CD8 expression at the DP→CD4+CD8lo stage and induced an innate memory phenotype in both thymic and peripheral T cells. Single-cell TCR sequencing revealed the kinetics of TCR recombination in the mouse thymus. However, the preactivation state after Lsd1 deletion neither disturbed the timeline of TCR rearrangement nor reshaped the TCR repertoire of SP cells. Overall, our study provides new insight into the function of Lsd1 as an important maintainer of endogenous retroelement homeostasis in early T-cell development.


Subject(s)
Interferons , Retroelements , Mice , Animals , Retroelements/genetics , Thymus Gland , Cell Differentiation/genetics , Receptors, Antigen, T-Cell , Mammals
3.
Antioxid Redox Signal ; 38(10-12): 709-730, 2023 04.
Article in English | MEDLINE | ID: mdl-36324232

ABSTRACT

Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis. Antioxid. Redox Signal. 38, 709-730.


Subject(s)
Chemokine CXCL12 , Collagen Type I , Cyclic AMP Receptor Protein , Myocardial Infarction , Myocardium , Nitrates , Oxidative Stress , Transcription, Genetic , Nitrates/metabolism , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Fibrosis , Chemokine CXCL12/genetics , Collagen Type I/genetics , Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/metabolism , Animals , Mice , Rats , Male , Rats, Sprague-Dawley , Disease Models, Animal , Peroxynitrous Acid/metabolism , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/pharmacology
4.
Cell Prolif ; 55(12): e13322, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053797

ABSTRACT

OBJECTIVES: Poor oocyte quality is detrimental to fertilization and embryo development, which causes infertility. Cystathionine ß-synthase (CBS) is one of the key enzymes modulating the metabolism of homocysteine (Hcy). Studies have shown that CBS plays an important role in female reproduction. However, the role of CBS in regulating oocyte quality during meiotic maturation still needs further investigation. MATERIALS AND METHODS: Immunohistochemistry, immunofluorescence, drug treatment, western blot, cRNA construct and in vitro transcription, microinjection of morpholino oligo and cRNA were performed for this study. RESULTS: We found that CBS was expressed both in human and mouse oocytes of follicles. In mouse oocytes, CBS was distributed in the nucleus at germinal vesicle (GV) stage and localized to spindle from germinal vesicle breakdown (GVBD) to metaphase II (MII). The expression of CBS was reduced in ovaries and oocytes of aged mice. CBS depletion resulted in meiotic arrest, spindle abnormality and chromosome misalignment, disrupted kinetochore-microtubule attachments and provoked spindle assembly checkpoint (SAC). CBS was disassembled when microtubules were disrupted with nocodazole, and co-localized with the stabilized microtubules after taxol treatment. Furthermore, CBS depletion decreased the acetylation of α-tubulin. CONCLUSIONS: These results reveal that CBS is required for the acetylation of α-tubulin to ensure proper spindle assembly in regulating oocyte quality during meiotic maturation.


Subject(s)
Cystathionine beta-Synthase , Spindle Apparatus , Female , Mice , Humans , Animals , Spindle Apparatus/metabolism , Cystathionine beta-Synthase/metabolism , Tubulin/metabolism , RNA, Complementary/metabolism , Meiosis , Oocytes/metabolism
5.
Antioxid Redox Signal ; 36(1-3): 1-14, 2022 01.
Article in English | MEDLINE | ID: mdl-34409847

ABSTRACT

Aims: Hyperhomocysteinemia (HHcy) has been considered as a risk factor for cardiovascular disease, Alzheimer's disease, nonalcoholic fatty liver, and many other pathological conditions. Vitamin B6, Vitamin B12, and folate have been used to treat HHcy in clinics. However, at present, clinical therapies of HHcy display unsatisfactory effects. Here, we would like to explore a new mechanism involved in homocysteine (Hcy) metabolic disorders and a novel target for HHcy treatment. The key enzymes involved in Hcy metabolism deserve more insightful investigation. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular Hcy metabolism. Until now, the effect of post-translational modification on the bioactivity of MTHFR still remains unclear. This study aimed at exploring the relationship between MTHFR S-sulfhydration and its bioactivity, and at identifying the contribution of an elevated Hcy level on MTHFR bioactivity. Results: By both in vivo and in vitro studies, we observed the following results: (i) The bioactivity of MTHFR was positively associated with its S-sulfhydration level; (ii) MTHFR was modified at Cys32, Cys130, Cys131, Cys193, and Cys306 by S-sulfhydration under physiological conditions; (iii) Hydrogen sulfide (H2S) deficiency caused the decrease of MTHFR S-sulfhydration level and bioactivity in HHcy, which resulted in further aggravation of HHcy; and (iv) H2S donors reversed the decreased bioactivity of MTHFR in HHcy, thus reducing the excessive Hcy level. Innovation and Conclusion: Our study suggested that H2S could improve MTHFR bioactivity by S-sulfhydration, which might provide a candidate therapeutic strategy for HHcy. Antioxid. Redox Signal. 36, 1-14.


Subject(s)
Hyperhomocysteinemia , Methylenetetrahydrofolate Reductase (NADPH2) , Folic Acid/therapeutic use , Homocysteine , Humans , Hyperhomocysteinemia/complications , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Oxidation-Reduction , Vitamin B 12/physiology , Vitamin B 12/therapeutic use
6.
Free Radic Biol Med ; 164: 20-33, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33418108

ABSTRACT

Sp1-CSE-H2S pathway plays an important role in homocysteine-metabolism, whose disorder can result in hyperhomocysteinemia. H2S deficiency in hyperhomocysteinemia has been reported, while the underlying mechanism and whether it in turn affects the progress of hyperhomocysteinemia are unclear. This study focused on the post-translational modification of Sp1/CSE and revealed four major findings: (1) Homocysteine-accumulation augmented CSE's nitration, inhibited its bio-activity, thus caused H2S deficiency. (2) H2S deficiency inhibited the S-sulfhydration of Sp1, down-regulated CSE and decreased H2S further, which in turn weakened CSE's own S-sulfhydration. (3) CSE was S-sulfhydrated at Cys84, Cys109, Cys172, Cys229, Cys252, Cys307 and Cys310, among which the S-sulfhydration of Cys172 and Cys310 didn't affect its enzymatic activity, while the S-sulfhydration of Cys84, Cys109, Cys229, Cys252 and Cys307 was necessary for its bio-activity. (4) H2S deficiency trapped homocysteine-metabolism into a vicious cycle, which could be broken by either blocking nitration or restoring S-sulfhydration. This study detected a new mechanism that caused severe hyperhomocysteinemia, thereby provided new therapeutic strategies for hyperhomocysteinemia.


Subject(s)
Hydrogen Sulfide , Hyperhomocysteinemia , Cystathionine gamma-Lyase/genetics , Humans , Hydrogen Sulfide/metabolism , Hyperhomocysteinemia/genetics , Protein Processing, Post-Translational , Sp1 Transcription Factor
7.
Clin Exp Pharmacol Physiol ; 48(4): 524-533, 2021 04.
Article in English | MEDLINE | ID: mdl-33325046

ABSTRACT

Ageing and hyperhomocysteinemia (HHcy) are important risk factors for cardiovascular diseases (CVDs). HHcy affects the occurrence of vascular diseases in the elderly. So far, the mechanism of HHcy-induced vascular ageing remains largely unknown. Autophagy level is significantly reduced in the ageing process, and restoring impaired autophagy to a normal state may be one of the possible ways to extend the expected longevity and lifespan in the future. In this study, we established the HHcy rat model by feeding a 2.5% methionine diet. Small animal ultrasound and the tail-cuff method indicated that the vascular pulse wave velocity (PWV) and pulse pressure (PP) of HHcy rats were increased significantly compared with the control group. Vascular morphology and structure have been changed in HHcy rats, including lumen dilation, increased collagen fibre deposition and increased p53/p21/p16 expression. In vitro, under the stimulation of homocysteine (500 µmol/L, 24 hours), the rat vascular smooth muscle cells (VSMCs) presented senescence, which was characterized by the increased expression of ageing-related markers, such as p16, p21 and p53 as well as increased senescence-associated beta-galactosidase (SA-ß-gal) activity. Meanwhile, the autophagy level was decreased both in vivo and in vitro, shown as the increased level of autophagy substrate p62 and the reduced level of autophagy marker LC3 II/I in the thoracic aorta of HHcy rats and in Hcy-treated VSMCs, respectively. The senescence phenotype of VSMCs was reversed by increased autophagy levels induced by rapamycin. Our findings indicate that decreased autophagy of VSMCs is involved in hyperhomocysteinemia-induced vascular ageing.


Subject(s)
Hyperhomocysteinemia , Muscle, Smooth, Vascular , Animals , Autophagy , Male , Pulse Wave Analysis , Rats , Sirolimus
8.
Oxid Med Cell Longev ; 2020: 4252047, 2020.
Article in English | MEDLINE | ID: mdl-32047576

ABSTRACT

The kidneys are important organs that are susceptible to aging. Hyperhomocysteinemia (HHcy) is a risk factor for nephropathy and is associated with chronic nephritis, purpuric nephritis, and nephrotic syndrome. Numerous studies have shown that elevated serum homocysteine levels can damage the kidneys; however, the underlying mechanism of HHcy on kidney damage remains unclear. In this study, we make use of a diet-induced HHcy rat model and in vitro cell culture to explore the role of autophagy in HHcy-induced renal aging and further explored the underlying mechanism. We demonstrated that HHcy led to the development of renal aging. Promoted kidney aging and autophagic insufficiency were involved in HHcy-induced renal aging. HHcy decreased the expression of transcription factor EB (TFEB), the key transcription factor of autophagy-related genes in renal tissue. Further experiments showed that nitrative stress levels were increased in the kidney of HHcy rats. Interestingly, pretreatment with the peroxynitrite (ONOO-) scavenger FeTMPyP not only reduced the Hcy-induced nitrative stress in vitro but also partially attenuated the decrease in TFEB in both protein and mRNA levels. Moreover, our results indicated that HHcy reduced TFEB expression and inhibited TFEB-mediated autophagy activation by elevating nitrative stress. In conclusion, this study showed an important role of autophagic insufficiency in HHcy-induced renal aging, in which downregulation of TFEB plays a major role. Furthermore, downexpression of TFEB was associated with increased nitrative stress in HHcy. This study provides a novel insight into the mechanism and therapeutic strategy for renal aging.


Subject(s)
Aging/physiology , Homocysteine/metabolism , Hyperhomocysteinemia/metabolism , Kidney Diseases/metabolism , Kidney/physiology , Animals , Autophagy , Cells, Cultured , Humans , Male , Metalloporphyrins , Peroxynitrous Acid/metabolism , Rats , Rats, Sprague-Dawley
9.
CNS Neurosci Ther ; 22(3): 184-93, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26387685

ABSTRACT

AIMS: Antihistaminergic drugs have traditionally been used to treat vestibular disorders in the clinic. As a potential central target for antihistaminergic drugs, the inferior vestibular nucleus (IVN) is the largest subnucleus of the central vestibular nuclear complex and is considered responsible for vestibular-autonomic responses and integration of vestibular, cerebellar, and multisensory signals. However, the role of histamine on the IVN, particularly the underlying mechanisms, is still not clear. METHODS: Using whole-cell patch-clamp recordings on rat brain slices, histamine-induced effect on IVN neurons and the underlying receptor and ionic mechanisms were investigated. RESULTS: We found that histamine remarkably depolarized both spontaneous firing neurons and silent neurons in IVN via both histamine H1 and histamine H2 receptors. Furthermore, Na(+) -Ca(2+) exchangers (NCXs) and background leak K(+) channels linked to H1 receptors and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to H2 receptors comediate the histamine-induced depolarization on IVN neurons. CONCLUSION: These results demonstrate the multiple ionic mechanisms underlying the excitatory modulation of histamine/central histaminergic system on IVN neurons and the related vestibular reflexes and functions. The findings also suggest potential targets for the treatment of vestibular disorders in the clinic, at the level of ionic channels in central vestibular nuclei.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Histamine/pharmacology , Neurons/drug effects , Potassium Channels/metabolism , Sodium-Calcium Exchanger/metabolism , Vestibular Nuclei/cytology , Animals , Animals, Newborn , Benzyl Compounds/pharmacology , Cesium/pharmacology , Chlorides/pharmacology , Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Dose-Response Relationship, Drug , Histamine Agents/pharmacology , In Vitro Techniques , Membrane Potentials/drug effects , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Pyrimidines/pharmacology , Rats , Sodium Channel Blockers/pharmacology , Sodium-Calcium Exchanger/antagonists & inhibitors , Tetrodotoxin/pharmacology , Thiazolidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...