Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Front Microbiol ; 15: 1287083, 2024.
Article in English | MEDLINE | ID: mdl-38756734

ABSTRACT

Yeast is one of the important symbiotic flora in the insect gut. However, little is known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) under various dietary conditions. The composition and function of the intestinal yeast community also remain unclear. In this research, we explored the composition of yeast microorganisms in H. armigera larvae under different feeding environments, including apple, pear, tomato, artificial diet (laboratory feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) using high-throughput sequencing. Results showed that a total of 43 yeast OTU readings were obtained, comprising 33 yeast genera and 42 yeast species. The yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring the larvae from artificial diet to apple, pear and tomato, the composition of intestinal yeast community changed, mainly reflected in the increased relative abundance of Hanseniaspora and the decreased abundance of Trichosporon. Simultaneously, the results of α diversity index indicated that the intestinal yeast microbial diversity of H. armigera fed on wild plants was higher than that of indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there were significant differences in the gut yeast composition of H. armigera larvae on different diets. Our results confirmed that gut yeast communities of H. armigera can be influenced by host diets and may play an important role in host adaptation.

2.
ACS Biomater Sci Eng ; 10(3): 1544-1553, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38369785

ABSTRACT

As attempting personalized medicine, 3D-printed tissue engineering scaffolds are employed to combine with therapeutic proteins/peptides especially in the clinical treatment of infectious diseases, genetic diseases, and cancers. However, current drug-loading methods, such as immersion and encapsulation, usually lead to the burst release of the drugs. To address these issues, we proposed an integrated strategy toward the long-term controlled release of protein. In this study, patient-customized 3D scaffolds incorporated with drug-loaded microspheres were printed to realize the effective delivery of the anti-human papillomavirus (anti-HPV) protein after cervical conization in the treatment of cervical cancer. The 3D-printed scaffold could provide mechanical support to the defect site and ensure local release of the drug to avoid systemic administration. Meanwhile, microspheres serve as functional components to prevent the inactivation of proteins, as well as regulate their release period to meet the time requirement of different treatment courses. The research also utilized bovine serum albumin as a model protein to validate the feasibility of these scaffolds as a generic technology platform. The bioactivity of the released anti-HPV protein was validated using a pseudovirus model, which demonstrated that the microsphere encapsulation would not cause protein denaturation during the scaffold fabrication process. Besides, 3D-printed scaffolds incorporated with carboxylated chitosan microspheres were biocompatible and beneficial for cell attachment, which have been demonstrated by favorable cell viability and better coverage results for HeLa and HFF-1. This study highlights the great potential of scaffolds incorporated with microspheres to serve as tissue engineering candidate products with the function of effective protein delivery in a long-term controlled manner and personalized shapes for clinical trials.


Subject(s)
Chitosan , Humans , Chitosan/pharmacology , Microspheres , Pharmaceutical Preparations , Human Papillomavirus Viruses , Printing, Three-Dimensional
3.
Nat Rev Immunol ; 24(1): 18-32, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37402992

ABSTRACT

In vitro 3D models are advanced biological tools that have been established to overcome the shortcomings of oversimplified 2D cultures and mouse models. Various in vitro 3D immuno-oncology models have been developed to mimic and recapitulate the cancer-immunity cycle, evaluate immunotherapy regimens, and explore options for optimizing current immunotherapies, including for individual patient tumours. Here, we review recent developments in this field. We focus, first, on the limitations of existing immunotherapies for solid tumours, secondly, on how in vitro 3D immuno-oncology models are established using various technologies - including scaffolds, organoids, microfluidics and 3D bioprinting - and thirdly, on the applications of these 3D models for comprehending the cancer-immunity cycle as well as for assessing and improving immunotherapies for solid tumours.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/therapy , Organoids , Immunotherapy , Disease Models, Animal , Immunity
4.
Biofabrication ; 15(4)2023 07 25.
Article in English | MEDLINE | ID: mdl-37402381

ABSTRACT

Hepatocellular carcinoma (HCC) poses a significant threat to human health and medical care. Its dynamic microenvironment and stages of development will influence the treatment strategies in clinics. Reconstructing tumor-microvascular interactions in different stages of the microenvironment is an urgent need forin vitrotumor pathology research and drug screening. However, the absence of tumor aggregates with paracancerous microvascular and staged tumor-endothelium interactions leads to bias in the antitumor drug responses. Herein, a spheroid-on-demand manipulation strategy was developed to construct staged endothelialized HCC models for drug screening. Pre-assembled HepG2 spheroids were directly printed by alternating viscous and inertial force jetting with high cell viability and integrity. A semi-open microfluidic chip was also designed to form a microvascular connections with high density, narrow diameter, and curved morphologies. According to the single or multiple lesions in stages Ⅰ or Ⅰ HCC, endothelialized HCC models from micrometer to millimeter scale with dense tumor cell aggregation and paracancerous endothelial distribution were successively constructed. A migrating stage Ⅰ HCC model was further constructed under TGF-ßtreatment, where the spheroids exhibited a more mesenchymal phenotype with a loose cell connection and spheroid dispersion. Finally, the stage ⅠHCC model showed stronger drug resistance compared to the stage Ⅰ model, while the stage III showed a more rapid response. The corresponding work provides a widely applicable method for the reproduction of tumor-microvascular interactions at different stages and holds great promise for the study of tumor migration, tumor-stromal cell interactions, and the development of anti-tumor therapeutic strategies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Drug Evaluation, Preclinical , Spheroids, Cellular/pathology , Printing, Three-Dimensional , Tumor Microenvironment
5.
Int J Bioprint ; 8(2): 543, 2022.
Article in English | MEDLINE | ID: mdl-35669322

ABSTRACT

Intimal hyperplasia and restenosis caused by excessive proliferation of smooth muscle cells (SMC) are the main factors for the failure of stent implantation. Drug-eluting stents carried with antiproliferative drugs have emerged as a successful approach to alleviate early neointimal development. However, these agents have been reported to have an undesirable effect on re-endothelialization. In this study, we proposed an integrated bioresorbable stent coated with dipyridamole (DP)-loaded poly(D,L-lactide) (PDLLA) nanofibers. Three-dimensional (3D) bioresorbable stents were fabricated by printing on a rotation mandrel using polycaprolactone (PCL), and the stents were further coated with PDLLA/DP nanofibers. The in vitro degradation and drug release evaluation illustrated the potential for long-term release of DP. Stents coated with PDLLA/DP nanofibers showed excellent hemocompatibility. The cell viability, proliferation, and morphology analysis results revealed that stents coated with PDLLA/DP nanofibers could prevent the proliferation of SMC and have no adverse effects on endothelial cells. The in vivo implantation of stents coated with PDLLA/DP nanofibers showed initial patency and continuous endothelialization and alleviated neointimal formation. The attractive in vitro and in vivo performance indicated its potential for restenosis prevention and endothelialization.

6.
Biomedicines ; 9(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34680415

ABSTRACT

Hydrogels have recently received attention as delivery carriers owing to their good biocompatibility and structural similarity to natural extracellular matrices. However, the utilization of traditional single-network (SN) hydrogels is limited by poor mechanical properties and burst drug release. Therefore, we developed a novel double-network (DN) hydrogel, which employs an alginate (ALG)/polyethylene glycol diacrylate (PEGDA) network to adjust the mechanical strength and a positively charged monomer AETAC (2-(acryloyloxy)ethyl]trimethyl-ammonium chloride) to regulate the release curve of the electronegative anti-human papillomavirus (HPV) protein (bovine ß-lactoglobulin modified with 3-hydroxyphthalic anhydride) based on an affinity-controlled delivery mechanism. The results show that the double-network hydrogel strongly inhibits the burst release, and the burst release amount is about one-third of that of the single-network hydrogel. By changing the concentration of the photoinitiator, the mechanical strength of the DN hydrogels can be adjusted to meet the stiffness requirements for various tissues within the range of 0.71 kPa to 10.30 kPa. Compared with the SN hydrogels, the DN hydrogels exhibit almost twice the mechanical strength and have smaller micropores. Cytotoxicity tests indicated that these SN and DN hydrogels were not cytotoxic with the result of over 100% relative proliferation rate of the HUVECs. Furthermore, DN hydrogels can significantly alleviate the burst release of antiviral proteins and prolong the release time to more than 14 days. Finally, we utilized digital light processing (DLP) technology to verify the printability of the DN hydrogel. Our study indicates that ALG/PEGDA-AETAC DN hydrogels could serve as platforms for delivering proteins and show promise for diverse tissue engineering applications.

7.
Biomed Mater ; 15(4): 045005, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32109897

ABSTRACT

Cervical cancer induced by human papillomavirus (HPV) causes severe morbidity worldwide. Although cervical conization has been widely accepted as the most conventional surgery against cervical cancer, tissue defects and high recurrence rates have a significant negative impact on women's mental and physical health. Herein we developed an implantable, personalized cervical implant with drug release function using 3D printing technology. The cervical implant was designed in cone-shape with hieratical porous structures according to the clinical data, 3D-printed using polyurethane by low-temperature deposition manufacturing (LDM), and finished by lyophilization. Anti-HPV protein was loaded into the porous structure under negative pressure afterwards. Elastic biomedical polyurethane and the porous structure ensured that these cervical implants were equipped with tailored mechanical properties comparable to physiological cervix tissue. Cytotoxicity and cytocompatibility tests indicated that these 3D-printed cervical implants supported cell adhesion and growth. More importantly, the cervical implants with regulated pores could help to quantitatively control the loading and release of anti-HPV protein to inhibit dissociative viruses near the cervix validly. As a result, the 3D-printed cervical implants in the present study showed considerable potential for use as functional tissue implants against HPV infection after cervical conization.


Subject(s)
Cervix Uteri/metabolism , Drug Delivery Systems , Printing, Three-Dimensional , Prostheses and Implants , Cell Adhesion , Conization/methods , Female , Freeze Drying , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Image Processing, Computer-Assisted , Polyurethanes/chemistry , Porosity , Prosthesis Design , Stress, Mechanical , Temperature , Uterine Cervical Neoplasms/drug therapy
8.
Sheng Wu Gong Cheng Xue Bao ; 24(8): 1480-4, 2008 Aug.
Article in Chinese | MEDLINE | ID: mdl-18998555

ABSTRACT

Gene of human adiponectin (ADPN) was cloned by PCR-driven overlap extension. The ADPN gene was linked into pGEM-T vector. After the sequence was determined, the ADPN gene was subcloned into expression vector pPIC3.5K to yield the recombinant expression vector pPIC3.5K-ADPN. The recombinant plasmid was transformed into Pichia pastoris GS115 by electroporation, then the recombinant strain was identified by PCR and Southern blotting. After induction by methanol, ADPN was expressed in GS115, then the protein was identified by Western blotting. The results showed that the ADPN was expressed successfully. The optimum conditions of expression were 30 degrees C and 1% methanol inducing 48 h.


Subject(s)
Adiponectin/genetics , Pichia/genetics , Polymerase Chain Reaction/methods , Recombinant Proteins/biosynthesis , Adiponectin/biosynthesis , Cloning, Molecular , Electroporation , Humans , Methanol/pharmacology , Pichia/metabolism , Recombinant Proteins/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...