Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746212

ABSTRACT

The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance: The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .

2.
bioRxiv ; 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37808851

ABSTRACT

Instead of employing telomerases to safeguard chromosome ends, dipteran species maintain their telomeres by transposition of telomeric-specific retrotransposons (TRs): in Drosophila , these are HeT-A , TART , and TAHRE . Previous studies have shown how these TRs create tandem repeats at chromosome ends, but the exact mechanism controlling TR transcription has remained unclear. Here we report the identification of multiple subunits of the transcription cofactor Mediator complex and transcriptional factors Scalloped (Sd, the TEAD homolog in flies) and E2F1-Dp as novel regulators of TR transcription and telomere length in Drosophila . Depletion of multiple Mediator subunits, Dp, or Sd increased TR expression and telomere length, while over-expressing E2F1-Dp or knocking down the E2F1 regulator Rbf1 (Retinoblastoma-family protein 1) stimulated TR transcription, with Mediator and Sd affecting TR expression through E2F1-Dp. The CUT&RUN analysis revealed direct binding of CDK8, Dp, and Sd to telomeric repeats. These findings highlight the essential role of the Mediator complex in maintaining telomere homeostasis by regulating TR transcription through E2F1-Dp and Sd, revealing the intricate coupling of TR transcription with the host cell-cycle machinery, thereby ensuring chromosome end protection and genomic stability during cell division.

3.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36305265

ABSTRACT

Fine-tuning of lipogenic gene expression is important for the maintenance of long-term homeostasis of intracellular lipids. The SREBP family of transcription factors are master regulators that control the transcription of lipogenic and cholesterogenic genes, but the mechanisms modulating SREBP-dependent transcription are still not fully understood. We previously reported that CDK8, a subunit of the transcription co-factor Mediator complex, phosphorylates SREBP at a conserved threonine residue. Here, using Drosophila as a model system, we observed that the phosphodeficient SREBP proteins (SREBP-Thr390Ala) were more stable and more potent in stimulating the expression of lipogenic genes and promoting lipogenesis in vivo than wild-type SREBP. In addition, starvation blocked the effects of wild-type SREBP-induced lipogenic gene transcription, whereas phosphodeficient SREBP was resistant to this effect. Furthermore, our biochemical analyses identified six highly conserved amino acid residues in the N-terminus disordered region of SREBP that are required for its interactions with both Cdk8 and the MED15 subunit of the small Mediator complex. These results support that the concerted actions of Cdk8 and MED15 are essential for the tight regulation of SREBP-dependent transcription. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Drosophila Proteins , Lipogenesis , Animals , Lipogenesis/genetics , Drosophila , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Mediator Complex/metabolism , Cell Nucleus/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism
4.
EMBO Rep ; 22(4): e51298, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33594776

ABSTRACT

Notch signaling and epigenetic factors are known to play critical roles in regulating tissue homeostasis in most multicellular organisms, but how Notch signaling coordinates with epigenetic modulators to control differentiation remains poorly understood. Here, we identify heterochromatin protein 1c (HP1c) as an essential epigenetic regulator of gut homeostasis in Drosophila. Specifically, we observe that HP1c loss-of-function phenotypes resemble those observed after Notch signaling perturbation and that HP1c interacts genetically with components of the Notch pathway. HP1c represses the transcription of Notch target genes by directly interacting with Suppressor of Hairless (Su(H)), the key transcription factor of Notch signaling. Moreover, phenotypes caused by depletion of HP1c in Drosophila can be rescued by expressing human HP1γ, suggesting that HP1γ functions similar to HP1c in Drosophila. Taken together, our findings reveal an essential role of HP1c in normal development and gut homeostasis by suppressing Notch signaling.


Subject(s)
Drosophila Proteins , Animals , Chromosomal Proteins, Non-Histone/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Heterochromatin , Homeostasis , Humans , Receptors, Notch/genetics
5.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053834

ABSTRACT

Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo.


Subject(s)
Amino Acid Motifs , Binding Sites , Cyclin-Dependent Kinase 8/chemistry , Drosophila Proteins/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Protein Kinase Inhibitors/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drosophila Proteins/antagonists & inhibitors , Humans , Hydrogen Bonding , Ligands , Molecular Conformation , Mutation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Species Specificity , Structure-Activity Relationship
6.
PLoS Genet ; 16(5): e1008832, 2020 05.
Article in English | MEDLINE | ID: mdl-32463833

ABSTRACT

Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. Thus, it is essential to understand the regulatory network modulating the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-specific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led us to identify genetic interactions between the CDK8-CycC pair and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFß, or Transforming Growth Factor-ß) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFß signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the MED complex have revealed six additional subunits that are required for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and CycC, together with a few other subunits of the MED complex, may coordinate with other transcription cofactors in regulating Mad-dependent transcription during wing development in Drosophila.


Subject(s)
Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Animals , Cyclin C/metabolism , Cyclin-Dependent Kinase 8/metabolism , Drosophila , Gene Expression Regulation, Developmental , Haploinsufficiency , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Signal Transduction , Transcription, Genetic
7.
Adv Exp Med Biol ; 1167: 129-155, 2019.
Article in English | MEDLINE | ID: mdl-31520353

ABSTRACT

Multiple large-scale epidemiological studies have identified obesity as an important risk factor for a variety of human cancers, particularly cancers of the uterus, gallbladder, kidney, liver, colon, and ovary, but there is much uncertainty regarding how obesity increases the cancer risks. Given that obesity has been consistently identified as a major risk factor for uterine tumors, the most common malignancies of the female reproductive system, we use uterine tumors as a pathological context to survey the relevant literature and propose a novel hypothesis: chronic downregulation of the cyclin-dependent kinase 8 (CDK8) module, composed of CDK8 (or its paralog CDK19), Cyclin C, MED12 (or MED12L), and MED13 (or MED13L), by elevated insulin or insulin-like growth factor signaling in obese women may increase the chances to dysregulate the activities of transcription factors regulated by the CDK8 module, thereby increasing the risk of uterine tumors. Although we focus on endometrial cancer and uterine leiomyomas (or fibroids), two major forms of uterine tumors, our model may offer additional insights into how obesity increases the risk of other types of cancers and diseases. To illustrate the power of model organisms for studying human diseases, here we place more emphasis on the findings obtained from Drosophila melanogaster.


Subject(s)
Drosophila melanogaster , Obesity/complications , Uterine Neoplasms/pathology , Animals , Cyclin-Dependent Kinase 8/genetics , Disease Models, Animal , Drosophila Proteins/genetics , Female , Humans , Mediator Complex/genetics , Risk Factors
8.
Nature ; 569(7758): 718-722, 2019 05.
Article in English | MEDLINE | ID: mdl-31118511

ABSTRACT

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.


Subject(s)
Amino Acid Motifs , Conserved Sequence , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Crystallography, X-Ray , Enzyme Activation , HEK293 Cells , Humans , Interferon-beta/metabolism , Membrane Proteins/genetics , Models, Molecular , Mutation , Nucleotides, Cyclic/metabolism , Protein Binding , Signal Transduction
9.
10.
Dev Biol ; 444(2): 62-70, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30352217

ABSTRACT

The complex interplay between genetic and environmental factors, such as diet and lifestyle, defines the initiation and progression of multifactorial diseases, including cancer, cardiovascular and metabolic diseases, and neurological disorders. Given that most of the studies have been performed in controlled experimental settings to ensure the consistency and reproducibility, the impacts of environmental factors, such as dietary perturbation, on the development of animals with different genotypes and the pathogenesis of these diseases remain poorly understood. By analyzing the cdk8 and cyclin C (cycC) mutant larvae in Drosophila, we have previously reported that the CDK8-CycC complex coordinately regulates lipogenesis by repressing dSREBP (sterol regulatory element-binding protein)-activated transcription and developmental timing by activating EcR (ecdysone receptor)-dependent gene expression. Here we report that dietary nutrients, particularly proteins and carbohydrates, modulate the developmental timing through the CDK8/CycC/EcR pathway. We observed that cdk8 and cycC mutants are sensitive to the levels of dietary proteins and seven amino acids (arginine, glutamine, isoleucine, leucine, methionine, threonine, and valine). Those mutants are also sensitive to dietary carbohydrates, and they are more sensitive to monosaccharides than disaccharides. These results suggest that CDK8-CycC mediates the dietary effects on lipid metabolism and developmental timing in Drosophila larvae.


Subject(s)
Cyclin-Dependent Kinase 8/physiology , Drosophila Proteins/physiology , Larva/metabolism , Nutritional Requirements/physiology , Animals , Cyclin C/metabolism , Cyclin C/physiology , Cyclin-Dependent Kinase 8/metabolism , Diet , Dietary Proteins/metabolism , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/metabolism , Gene Expression , Reproducibility of Results
11.
Nat Commun ; 9(1): 4160, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297884

ABSTRACT

Being relatively simple and practical, Drosophila transgenic RNAi is the technique of top priority choice to quickly study genes with pleiotropic functions. However, drawbacks have emerged over time, such as high level of false positive and negative results. To overcome these shortcomings and increase efficiency, specificity and versatility, we develop a next generation transgenic RNAi system. With this system, the leaky expression of the basal promoter is significantly reduced, as well as the heterozygous ratio of transgenic RNAi flies. In addition, it has been first achieved to precisely and efficiently modulate highly expressed genes. Furthermore, we increase versatility which can simultaneously knock down multiple genes in one step. A case illustration is provided of how this system can be used to study the synthetic developmental effect of histone acetyltransferases. Finally, we have generated a collection of transgenic RNAi lines for those genes that are highly homologous to human disease genes.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Promoter Regions, Genetic/genetics , RNA Interference , Animals , Animals, Genetically Modified , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation, Developmental , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , Wings, Animal/growth & development , Wings, Animal/metabolism
12.
Front Genet ; 9: 354, 2018.
Article in English | MEDLINE | ID: mdl-30233643

ABSTRACT

Post-translational modification of histones, such as histone methylation controlled by specific methyltransferases and demethylases, play critical roles in modulating chromatin dynamics and transcription in eukaryotes. Misregulation of histone methylation can lead to aberrant gene expression, thereby contributing to abnormal development and diseases such as cancer. As such, the mammalian lysine-specific demethylase 2 (KDM2) homologs, KDM2A and KDM2B, are either oncogenic or tumor suppressive depending on specific pathological contexts. However, the role of KDM2 proteins during development remains poorly understood. Unlike vertebrates, Drosophila has only one KDM2 homolog (dKDM2), but its functions in vivo remain elusive due to the complexities of the existing mutant alleles. To address this problem, we have generated two dKdm2 null alleles using the CRISPR/Cas9 technique. These dKdm2 homozygous mutants are fully viable and fertile, with no developmental defects observed under laboratory conditions. However, the dKdm2 null mutant adults display defects in circadian rhythms. Most of the dKdm2 mutants become arrhythmic under constant darkness, while the circadian period of the rhythmic mutant flies is approximately 1 h shorter than the control. Interestingly, lengthened circadian periods are observed when dKDM2 is overexpressed in circadian pacemaker neurons. Taken together, these results demonstrate that dKdm2 is not essential for viability; instead, dKDM2 protein plays important roles in regulating circadian rhythms in Drosophila. Further analyses of the molecular mechanisms of dKDM2 and its orthologs in vertebrates regarding the regulation of circadian rhythms will advance our understanding of the epigenetic regulations of circadian clocks.

13.
Proc Natl Acad Sci U S A ; 115(18): 4719-4724, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666231

ABSTRACT

CRISPR/Cas9-based transcriptional activation (CRISPRa) has recently emerged as a powerful and scalable technique for systematic overexpression genetic analysis in Drosophila melanogaster We present flySAM, a potent tool for in vivo CRISPRa, which offers major improvements over existing strategies in terms of effectiveness, scalability, and ease of use. flySAM outperforms existing in vivo CRISPRa strategies and approximates phenotypes obtained using traditional Gal4-UAS overexpression. Moreover, because flySAM typically requires only a single sgRNA, it dramatically improves scalability. We use flySAM to demonstrate multiplexed CRISPRa, which has not been previously shown in vivo. In addition, we have simplified the experimental use of flySAM by creating a single vector encoding both the UAS:Cas9-activator and the sgRNA, allowing for inducible CRISPRa in a single genetic cross. flySAM will replace previous CRISPRa strategies as the basis of our growing genome-wide transgenic overexpression resource, TRiP-OE.


Subject(s)
Animals, Genetically Modified , CRISPR-Cas Systems , Drosophila Proteins , Gene Expression Regulation/genetics , Transcription Factors , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Drosophila melanogaster , Transcription Factors/biosynthesis , Transcription Factors/genetics
14.
Nat Neurosci ; 21(3): 373-383, 2018 03.
Article in English | MEDLINE | ID: mdl-29434375

ABSTRACT

Addiction is proposed to arise from alterations in synaptic strength via mechanisms of long-term potentiation (LTP) and depression (LTD). However, the causality between these synaptic processes and addictive behaviors is difficult to demonstrate. Here we report that LTP and LTD induction altered operant alcohol self-administration, a motivated drug-seeking behavior. We first induced LTP by pairing presynaptic glutamatergic stimulation with optogenetic postsynaptic depolarization in the dorsomedial striatum, a brain region known to control goal-directed behavior. Blockade of this LTP by NMDA-receptor inhibition unmasked an endocannabinoid-dependent LTD. In vivo application of the LTP-inducing protocol caused a long-lasting increase in alcohol-seeking behavior, while the LTD protocol decreased this behavior. We further identified that optogenetic LTP and LTD induction at cortical inputs onto striatal dopamine D1 receptor-expressing neurons controlled these behavioral changes. Our results demonstrate a causal link between synaptic plasticity and alcohol-seeking behavior and suggest that modulation of this plasticity may inspire a therapeutic strategy for addiction.


Subject(s)
Alcohol Drinking , Cerebral Cortex/physiology , Drug-Seeking Behavior/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Neostriatum/physiology , Animals , Evoked Potentials/physiology , Glutamates/physiology , Male , Optogenetics , Rats , Rats, Long-Evans , Receptors, Dopamine D1/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Receptors, Presynaptic/physiology , Self Administration
15.
Proc Natl Acad Sci U S A ; 114(36): E7469-E7478, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827348

ABSTRACT

Deregulated Wnt signaling and altered lipid metabolism have been linked to obesity, diabetes, and various cancers, highlighting the importance of identifying inhibitors that can modulate Wnt signaling and aberrant lipid metabolism. We have established a Drosophila model with hyperactivated Wnt signaling caused by partial loss of axin, a key component of the Wnt cascade. The Axin mutant larvae are transparent and have severe adipocyte defects caused by up-regulation of ß-catenin transcriptional activities. We demonstrate pharmacologic mitigation of these phenotypes in Axin mutants by identifying bortezomib and additional peptide boronic acids. We show that the suppressive effect of peptide boronic acids on hyperactive Wnt signaling is dependent on α-catenin; the rescue effect is completely abolished with the depletion of α-catenin in adipocytes. These results indicate that rather than targeting the canonical Wnt signaling pathway directly, pharmacologic modulation of ß-catenin activity through α-catenin is a potentially attractive approach to attenuating Wnt signaling in vivo.


Subject(s)
Adipocytes/drug effects , Boronic Acids/pharmacology , Peptides/pharmacology , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects , Animals , Axin Protein/metabolism , Drosophila/drug effects , Drosophila/metabolism , Transcription, Genetic/drug effects , Up-Regulation/drug effects , beta Catenin/metabolism
16.
Sci Rep ; 7(1): 6355, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743914

ABSTRACT

Endogenous cyclic GMP-AMP (cGAMP) binds and activates STING to induce type I interferons. However, whether cGAMP plays any roles in regulating metabolic homeostasis remains unknown. Here we show that exogenous cGAMP ameliorates obesity-associated metabolic dysregulation and uniquely alters proinflammatory responses. In obese mice, treatment with cGAMP significantly decreases diet-induced proinflammatory responses in liver and adipose tissues and ameliorates metabolic dysregulation. Strikingly, cGAMP exerts cell-type-specific anti-inflammatory effects on macrophages, hepatocytes, and adipocytes, which is distinct from the effect of STING activation by DMXAA on enhancing proinflammatory responses. While enhancing insulin-stimulated Akt phosphorylation in hepatocytes and adipocytes, cGAMP weakens the effects of glucagon on stimulating hepatocyte gluconeogenic enzyme expression and glucose output and blunts palmitate-induced hepatocyte fat deposition in an Akt-dependent manner. Taken together, these results suggest an essential role for cGAMP in linking innate immunity and metabolic homeostasis, indicating potential applications of cGAMP in treating obesity-associated inflammatory and metabolic diseases.


Subject(s)
Adipocytes/immunology , Diet, High-Fat/adverse effects , Hepatocytes/immunology , Nucleotides, Cyclic/administration & dosage , Obesity/metabolism , Protein Serine-Threonine Kinases/metabolism , Adipocytes/drug effects , Animals , Hepatocytes/drug effects , Humans , Immunity, Innate , Interferon Type I/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Membrane Proteins/metabolism , Mice , Nucleotides, Cyclic/pharmacology , Obesity/chemically induced , Obesity/immunology , Phosphorylation , Xanthones/administration & dosage , Xanthones/pharmacology
17.
Proc Natl Acad Sci U S A ; 113(24): E3403-12, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27302953

ABSTRACT

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-ß) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.


Subject(s)
Interferon Regulatory Factor-3/chemistry , Rotavirus/chemistry , Viral Nonstructural Proteins/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Amino Acid Motifs , CREB-Binding Protein/chemistry , CREB-Binding Protein/genetics , CREB-Binding Protein/immunology , Humans , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/immunology , Protein Domains , Rotavirus/genetics , Rotavirus/immunology , Rotavirus Infections/genetics , Rotavirus Infections/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
18.
Nat Commun ; 6: 8856, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26581759

ABSTRACT

Epigenetics plays critical roles in controlling stem cell self-renewal and differentiation. Histone H1 is one of the most critical chromatin regulators, but its role in adult stem cell regulation remains unclear. Here we report that H1 is intrinsically required in the regulation of germline stem cells (GSCs) in the Drosophila ovary. The loss of H1 from GSCs causes their premature differentiation through activation of the key GSC differentiation factor bam. Interestingly, the acetylated H4 lysine 16 (H4K16ac) is selectively augmented in the H1-depleted GSCs. Furthermore, overexpression of mof reduces H1 association on chromatin. In contrast, the knocking down of mof significantly rescues the GSC loss phenotype. Taken together, these results suggest that H1 functions intrinsically to promote GSC self-renewal by antagonizing MOF function. Since H1 and H4K16 acetylation are highly conserved from fly to human, the findings from this study might be applicable to stem cells in other systems.


Subject(s)
Cell Self Renewal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Germ Cells/metabolism , Histones/metabolism , Amino Acid Motifs , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/chemistry , Drosophila melanogaster/genetics , Epigenesis, Genetic , Female , Germ Cells/cytology , Histones/chemistry , Histones/genetics , Male , Ovary/chemistry , Ovary/metabolism
19.
Bioresour Technol ; 197: 410-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26348287

ABSTRACT

Nitrate-dependent anaerobic ferrous oxidation (NAFO) is a new and valuable bio-process for the treatment of wastewaters with low C/N ratio, and the NAFO process is in state of the art. The heterotrophic denitrifying sludge (HDS), possessing NAFO activity, was used as bioaugmentation to enhance NAFO efficiency. At a dosage of 6% (V/V), the removal of nitrate and ferrous was 2.4 times and 2.3 times of as primary, and the volumetric removal rate (VRR) of nitrate and ferrous was 2.4 times and 2.2 times of as primary. Tracing experiments of HDS indicated that the bioaugmentation on NAFO reactor was resulted from the NAFO activity by HDS itself. The predominant bacteria in HDS were identified as Thauera (52.5%) and Hyphomicrobium (20.0%) which were typical denitrifying bacteria and had potential ability to oxidize ferrous. In conclusion, HDS could serve as bioaugmentation or a new seeding sludge for operating high-efficiency NAFO reactors.


Subject(s)
Microbial Consortia/physiology , Nitrates/metabolism , Sewage , Waste Disposal, Fluid/methods , Denitrification , Heterotrophic Processes , Hyphomicrobium/metabolism , Iron/metabolism , Oxidation-Reduction , Sewage/microbiology
20.
PLoS Biol ; 13(7): e1002207, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26222308

ABSTRACT

The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval-pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval-pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval-pupal transition.


Subject(s)
Cyclin C/metabolism , Cyclin-Dependent Kinase 8/metabolism , Drosophila Proteins/metabolism , Drosophila/growth & development , Drosophila/metabolism , Receptors, Steroid/metabolism , Animals , Animals, Genetically Modified , Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , DNA-Binding Proteins/metabolism , Drosophila/genetics , Drosophila Proteins/genetics , Ecdysteroids/biosynthesis , Female , Food Deprivation , Gene Expression Regulation , Larva/growth & development , Larva/metabolism , Mutation , Sterol Regulatory Element Binding Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...