Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 9: 662, 2018.
Article in English | MEDLINE | ID: mdl-29868104

ABSTRACT

MiRNA-induced gene silencing (MIGS) technology is a special kind of RNA interference technology that uses miR173 to mediate the production of trans-acting siRNA (ta-siRNA) to achieve target gene silencing. This technique has successfully mediated the silencing of interested genes in plants such as Arabidopsis, tobacco, petunia, etc. In order to establish the MIGS technology system in monocots such as rice, we constructed the MIGS backbone vectors pZHY930, pZHY931, pZHY932, and pZHY933 with different with promoters to regulate the expression of miR173 and miR173_ts. The rice OsPDS reporter gene was selected to compare the efficiency of four MIGS backbone vectors by the ratio of albino plants. The results showed that all the four backbone vectors could effectively mediate the target gene silencing, and pZHY932 showed highest efficiency up to 90%. Through MIGS silencing of endogenous OsROC5 and OsLZAY1 in rice, we successfully obtained rice mutant plants with rice leaf roll and tillering angles increasing, and further confirmed that MIGS backbone vector can efficiently mediate target gene silencing in rice. On the other hand, in order to verify the efficiency of MIGS-mediated multi-gene silencing in rice, we constructed two double-gene silencing vectors OsPDS and OsROC5, OsPDS and OsLZAY1, based on pZHY932 backbone vector. Double mutant rice plants with increased leaf and albino tiller angles. And we successfully obtained bladed leaf albino seedling and increased tillering angle albino seedling double-silencing mutations. We further constructed a MIGS-OsGBSS gene silencing vector and obtained rice materials with significantly reduced amylose content. This result indicated that MIGS could be an efficient method in monocots gene silencing and gene function analysis.

2.
Protoplasma ; 254(4): 1617-1625, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27915455

ABSTRACT

Medicinal secondary metabolites (salvianolic acids and tanshinones) are valuable natural bioactive compounds in Salvia miltiorrhiza and have widespread applications. Improvement of medicinal secondary metabolite accumulation through biotechnology is necessary and urgent to satisfy their increasing demand. Herein, it was demonstrated that the overexpression of the transcription factor Arabidopsis thaliana-enhanced drought tolerance 1 (AtEDT1) could affect medicinal secondary metabolite accumulation. In this study, we observed that the transgenic lines significantly conferred drought tolerance phenotype. Meanwhile, we found that the overexpression of AtEDT1 promoted root elongation in S. miltiorrhiza. Interestingly, we also found that the overexpression of AtEDT1 determined the accumulation of salvianolic acids, such as rosmarinic acid, lithospermic acid, salvianolic acid B, and total salvianolic acids due to the induction of the expression levels of salvianolic acid biosynthetic genes. Conversely, S. miltiorrhiza plants overexpressing the AtEDT1 transgene showed a decrease in tanshinone synthesis. Our results demonstrated that the overexpression of AtEDT1 significantly increased the accumulation of salvianolic acids in S. miltiorrhiza. Further studies are required to better elucidate the functional role of AtEDT1 in the regulation of phytochemical compound synthesis.


Subject(s)
Arabidopsis Proteins/genetics , Plant Roots/growth & development , Plants, Genetically Modified/growth & development , Salvia miltiorrhiza/growth & development , Transcription Factors/genetics , Abietanes/biosynthesis , Alkenes/metabolism , Arabidopsis Proteins/metabolism , Biosynthetic Pathways , Dehydration/metabolism , Gene Expression , Gene Expression Regulation, Plant , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Polyphenols/metabolism , Salvia miltiorrhiza/metabolism , Transcription Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL