Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Sci ; 18(4): 1594-1611, 2022.
Article in English | MEDLINE | ID: mdl-35280674

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver diseases worldwide. At present, there are no effective pharmacological therapies for NAFLD except lifestyle intervention-mediated weight loss. Atractylenolide III (ATL III), the major bioactive component found in Atractylode smacrocephala Koidz, has been shown to exert anti-oxidant, anti-tumor, anti-allergic response, anti-bacterial effects and cognitive protection. Here we investigate the therapeutic potential and underlying mechanisms of ATL III for the treatment of NAFLD. Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) and treated with ATL III. Lipid accumulation was analyzed by Oil Red O staining in liver tissues and free fatty acids (FFAs)-treated hepatocytes. AMP-activated protein (AMPK) and sirtuin 1(SIRT1) signaling pathways were inhibited by Compound C and EX527 in vitro, respectively. Small-interfering RNA (siRNA) was used to knockdown adiponectin receptor 1 (AdipoR1) expression in HepG2 cells. Results: ATL III treatment ameliorated liver injury and hepatic lipid accumulation in the HFD-induced NAFLD mouse model as demonstrated by that ATL III administration significantly reduced serum levels of alanine aminotransferase, glutamic oxaloacetic transaminase, triglycerides, total cholesterol and low-density lipoprotein. Furthermore, treatment with ATL III alleviated hepatic oxidative stress, inflammation and fibrosis in the HFD feeding model. To study the underlying mechanisms, we performed Computer Aided Design assay and found that open-formed AdipoR1 and adiponectin receptor 2 were the potential receptors targeted by ATL III. Interestingly, HFD feeding or FFAs treatment only reduced hepatic AdipoR1 expression, while such reduction was abolished by ATL III administration. In addition, in vitro treatment with ATL III activated the AdipoR1 downstream AMPK /SIRT1 signaling pathway and reduced lipid deposition in HepG2 cells, which was diminished by silencing AdipoR1. Finally, inhibition of AMPK or SIRT1, the AdipoR1 downstream signaling, abolished the protective effects of ATL III on lipid deposition and oxidative stress in FFAs-treated HepG2 cells. Conclusion: Our findings suggest that ATL III is a therapeutic drug for the treatment of NAFLD and such protective effect is mediated by activating hepatic AdipoR1-mediated AMPK/SIRT1 signaling pathway.


Subject(s)
Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Diet, High-Fat/adverse effects , Hep G2 Cells , Humans , Lactones , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Adiponectin/metabolism , Sesquiterpenes , Sirtuin 1/metabolism , Triglycerides/metabolism
3.
RSC Adv ; 11(11): 5923-5927, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-35423132

ABSTRACT

(Z)-4-(Iodomethylene)-3-(2,2,2-trifluoroethyl)-3,4-dihydroquinolin-2(1H)-ones and fluorinated 3,3-disubstituted 2-oxindoles are synthesized and evaluated for anti-hepatic fibrosis. CCK-8 assay indicates that most of the compounds have no obvious cytotoxicity on the human hepatic stellate cells (HSC) cell line. Collagen I and fibrosin expression levels are tested by ELISA, and the results show that several compounds can inhibit the expression of collagen I and fibrosin. Additionally, results from real time-PCR reveal that only one compound can inhibit the expression level of α-SMA, suggesting that this compound can inhibit the activation of the HSC cell line. These studies demonstrate that this compound may be a potential novel drug candidate for anti-hepatic fibrosis (approximately 5-6 lines).

4.
J Immunol Res ; 2020: 1826587, 2020.
Article in English | MEDLINE | ID: mdl-32766317

ABSTRACT

Helping B cells and antibody responses is a major function of CD4+T helper cells. Follicular helper T (Tfh) cells are identified as a subset of CD4+T helper cells, which is specialized in helping B cells in the germinal center reaction. Tfh cells express high levels of CXCR5, PD-1, IL-21, and other characteristic markers. Accumulating evidence has demonstrated that the dysregulation of Tfh cells is involved in infectious, inflammatory, and autoimmune diseases, including lymphocytic choriomeningitis virus (LCMV) infection, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), IgG4-related disease (IgG4-RD), Sjögren syndrome (SS), and type 1 diabetes (T1D). Activation of subset-specific transcription factors is the essential step for Tfh cell differentiation. The differentiation of Tfh cells is regulated by a complicated network of transcription factors, including positive factors (Bcl6, ATF-3, Batf, IRF4, c-Maf, and so on) and negative factors (Blimp-1, STAT5, IRF8, Bach2, and so on). The current knowledge underlying the molecular mechanisms of Tfh cell differentiation at the transcriptional level is summarized in this paper, which will provide many perspectives to explore the pathogenesis and treatment of the relevant immune diseases.


Subject(s)
Cell Differentiation/immunology , T Follicular Helper Cells/immunology , Transcription Factors/immunology , Animals , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Germinal Center/immunology , Humans , Inflammation/immunology , Lymphocyte Activation/immunology , Transcription, Genetic/immunology
5.
J Immunol Res ; 2019: 8983903, 2019.
Article in English | MEDLINE | ID: mdl-30766891

ABSTRACT

AIM: To compare the clinical efficacy of the combination therapy with Bushen formula (BSF) plus entecavir (ETV) in naïve chronic hepatitis B (CHB) patients and that in CHB patients with partial virological response to ETV and explore the relevant immunoregulatory mechanism. MATERIALS AND METHODS: Two hundred and twenty CHB patients were enrolled in the historical prospective cohort study. Patients were categorized into a treatment group (T-Group: combination therapy with BSF plus ETV) and a control group (C-Group: ETV). Patients in T-Group and C-Group were grouped into T1/C1 (treatment-naïve patients) and T2/C2 (patients with partial virological response to ETV). Biochemical assessment, viral load quantitation, and HBV markers were tested. Chinese medicine symptom complex score was evaluated and recorded as well. In addition, peripheral blood mononuclear cells were separated from blood samples in 56 patients and 11 healthy donors. The frequencies of Th1, Treg, and dendritic cells (DCs) and expression levels of PD-1/PD-L1 were examined by flow cytometry. RESULTS: In treatment-naïve CHB patients, complete viral suppression rates in HBeAg(-) patients were higher than those in HBeAg(+) patients in both T and C groups. In patients with partial virological response to ETV, the rate of HBsAg decline ≥ 20% in HBeAg(+) patients of T2-Group was higher than that in HBeAg(+) patients of C2-Group. A significant reduction of Chinese medicine symptom complex score was only observed in T-Group. The study of mechanism showed that, compared with healthy controls, Th1 and DC frequencies were decreased in all CHB patients, while Treg frequency was increased only in treatment-naïve patients. In addition, compared with healthy controls, PD-1 expression levels on Th1 and Treg were increased in all patients and PD-L1 expression levels on DCs were increased only in treatment-naïve patients. In treatment-naïve patients, the combination therapy with BSF plus ETV increased Th1 and DC frequencies and decreased Treg frequency, which was correlated with HBsAg decline. In addition, in patients with partial virological response to ETV, the combination therapy downregulated PD-L1 levels on DCs and the frequency of Treg, which was related with HBsAg decline. CONCLUSIONS: In patients with partial virological response to ETV, HBeAg(+) patients tend to achieve ideal effects after the combination therapy with BSF plus ETV, which may correlate with the decrease of Treg frequency and the downregulation of PD-L1 levels on DCs.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Guanine/analogs & derivatives , Hepatitis B virus/physiology , Hepatitis B, Chronic/therapy , Leukocytes, Mononuclear/drug effects , Adult , Antiviral Agents , Combined Modality Therapy , Drug Therapy, Combination , Female , Guanine/therapeutic use , Hepatitis B, Chronic/immunology , Humans , Immunomodulation , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...