Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 937281, 2022.
Article in English | MEDLINE | ID: mdl-35909554

ABSTRACT

Benzene is a ubiquitous pollutant and mainly accumulates in adipose tissue which has important roles in metabolic diseases. The latest studies reported that benzene exposure was associated with many metabolic disorders, while the effect of benzene exposure on adipose tissue remains unclear. We sought to investigate the effect using in vivo and in vitro experiments. Male adult C57BL/6J mice were exposed to benzene at 0, 1, 10 and 100 mg/kg body weight by intragastric gavage for 4 weeks. Mature adipocytes from 3T3-L1 cells were exposed to hydroquinone (HQ) at 0, 1, 5 and 25 µM for 24 hours. Besides the routine hematotoxicity, animal experiments also displayed significant body fat content decrease from 1 mg/kg. Interestingly, the circulating non-esterified fatty acid (NEFA) level increased from the lowest dose (ptrend < 0.05). Subsequent analysis indicated that body fat content decrease may be due to atrophy of white adipose tissue (WAT) upon benzene exposure. The average adipocyte area of WAT decreased significantly even from 1 mg/kg with no significant changes in total number of adipocytes. The percentages of small and large adipocytes in WAT began to significantly increase or decrease from 1 mg/kg (all p < 0.05), respectively. Critical genes involved in lipogenesis and lipolysis were dysregulated, which may account for the disruption of lipid homeostasis. The endocrine function of WAT was also disordered, manifested as significant decrease in adipokine levels, especially the leptin. In vitro cell experiments displayed similar findings in decreased fat content, dysregulated critical lipid metabolism genes, and disturbed endocrine function of adipocytes after HQ treatment. Pearson correlation analysis showed positive correlations between white blood cell (WBC) count with WAT fat content and plasma leptin level (r = 0.330, 0.344, both p < 0.05). This study shed light on the novel aspect that benzene exposure could induce lipodystrophy and disturb endocrine function of WAT, and the altered physiology of WAT might in turn affect benzene-induced hematotoxicity and metabolic disorders. The study provided new insight into understanding benzene-induced toxicity and the relationship between benzene and adipose tissue.


Subject(s)
Leptin , Lipodystrophy , Adipose Tissue, White/metabolism , Animals , Benzene/metabolism , Benzene/toxicity , Leptin/metabolism , Lipodystrophy/metabolism , Male , Mice , Mice, Inbred C57BL
2.
Environ Pollut ; 310: 119894, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35932901

ABSTRACT

Inhalation is the most frequent route and the lung is the primary damaged organ for human exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). However, there is limited information on the risk and dose-effect of the BTEXS mixture on pulmonary function, particularly the overall effect. We conducted a cross-sectional study in a petrochemical plant in southern China. Spirometry and cumulative exposure dose (CED) of BTEXS were used to measure lung function and exposure levels for 635 workers in 2020, respectively. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were tested and interpreted as percentages to predicted values [FVC or FEV1% predicted], and FEV1 to FVC ratio [FEV1/FVC (%)]. We found the reduction in FVC% predicted and the risk of lung ventilation dysfunction (LVD) and its two subtypes (mixed and restrictive ventilation dysfunction, MVD, and MVD) were significantly associated with BTEXS individuals. In addition, pulmonary function damage associated with BTEXS was modified by the smoking status and age. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-effect on lung function damage induced by the BTEXS mixture. Our results show wqs, an index of weighted quartiles for BTEXS, was potentially associated with the reduction in FVC and FEV1% predicted with the coefficients [95% confidence intervals (CI)] between -1.136 (-2.202, -0.070) and -1.230 (-2.265, -0.195). Odds ratios (ORs) and 95% CIs for the wqs index of LVD, MVD, and RVD were 1.362 (1.129, 1.594), 1.323 (1.084, 1.562), and 1.394 (1.096, 1.692), respectively. Furthermore, xylene, benzene, and toluene in the BTEXS mixture potentially contribute to the development of lung function impairment. Our novel findings demonstrated the dose-response relationships between pulmonary function impairment and the BTEXS mixture and disclosed the potential key pollutants in the BTEXS mixture.


Subject(s)
Benzene , Xylenes , Benzene Derivatives , Cross-Sectional Studies , Humans , Lung , Risk Assessment , Styrene , Toluene
3.
Environ Res ; 212(Pt D): 113488, 2022 09.
Article in English | MEDLINE | ID: mdl-35597292

ABSTRACT

BACKGROUND: Lung is one of the primary target organs of benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). Small airways dysfunction (SAD) might be a sensitive indicator of early chronic respiratory disease. Here, we explored the relationships between exposure to BTEXS and small airways function, and identified the priority control pollutants in BTEXS mixtures. METHODS: 635 petrochemical workers were recruited. Standard spirometry testing was conducted by physicians. The cumulative exposure dose (CED) of BTEXS for each worker was estimated. The peak expiratory flow (PEF), forced expiratory flow between 25 and 75% of forced vital capacity (FEF25∼75%), and the expiratory flow rate found at 25%, 50%, and 75% of the remaining exhaled vital capacity (MEF25%, MEF50%, and MEF75%) were measured. SAD was also evaluated based on measured parameters. The associations between exposure to BTEXS individuals or mixtures and small airways function were evaluated using generalized linear regression models (GLMs) and quantile g-computation models (qgcomp). Meanwhile, the weights of each homolog in the association were estimated. RESULTS: The median CED of BTEXS are 9.624, 19.306, 24.479, 28.210, and 46.781 mg/m3·years, respectively. A unit increase in ln-transformed styrene CED was associated with a decrease in FEF25∼75% and MEF50% based on GLMs. One quartile increased in BTEXS mixtures (ln-transformed) was significantly associated with a 0.325-standard deviation (SD) [95% confidence interval (CI): -0.464, -0.185] decline in FEF25∼75%, a 0.529-SD (95%CI: -0.691, -0.366) decline in MEF25%, a 0.176-SD (95%CI: -0.335, -0.017) decline in MEF75%, and increase in the risk of abnormal of SAD [risk ratios (95%CI): 1.520 (95%CI: 1.143, 2.020)]. Benzene and styrene were the major chemicals in BTEXS for predicting the overall risk of SAD. CONCLUSION: Our novel findings demonstrate the significant association between exposure to BTEXS mixture and small airways function decline and the potential roles of key homologs (benzene and styrene) in SAD.


Subject(s)
Benzene , Xylenes , Benzene/toxicity , Benzene Derivatives/toxicity , Cross-Sectional Studies , Humans , Styrene/toxicity , Toluene/toxicity , Xylenes/toxicity
4.
Chem Commun (Camb) ; 56(1): 141-144, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31799555

ABSTRACT

N-Doped amber necklace-like structured MoS2@carbon nanofibers (ANL MoS2@CNFs) were fabricated via the confined growth method, constructing a hierarchical structure with 1D nanofibers, 2D nanosheets, and 3D cross-linked networks. This special structure could effectively alleviate the volume effect and enhance the storage performance of lithium/sodium ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...