Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Sci Technol Adv Mater ; 25(1): 2309912, 2024.
Article in English | MEDLINE | ID: mdl-38333111

ABSTRACT

The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. However, the strategies for incorporating metals, whether through pre-loading in the hollow interior or post-encapsulation in the mesoporous shell, still face challenges in achieving quantitative doping of various metals and preventing metal aggregation or channel blockage during usage. In this study, we explored the doping of different metals into silica hollow spheres based on the dissolution-regrowth process of silica. The process may promote the formation of more structural defects and functional silanol groups, which could facilitate the fixation of metals in the silica networks. With this simple and efficient approach, we successfully achieved the integration of ten diverse metal species into silica hollow sphere (SHS). Various single-metal, dual-metal, triple-metal, and quadruple-metal doped SHSs have been prepared, with the doped metals being stable and homogeneously dispersed in the structure. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared.


Significance of this work: The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. The incorporation of metals within SHSs is always either at the interior core or in the porous shells. The former method mainly utilizes metal nanoparticles as the core and regulates the synthesis of outer porous silica shells. The latter is primarily driven by the capillary force or intermolecular interactions with surface ligands to facilitate the post-loading of metal species in porous silica structures. The main problems associated with metal-doped SHSs include 1) controlled loading of different metals with a homogeneous distribution; 2) fixation of metal species in the structures to prevent aggregation during usage, particularly at high temperatures; 3) pore channel blockage after metal loading, which may hinder the loading of other external molecules. In this work, we developed the dissolution-regrowth of silica strategy for integrating various metals in porous SHSs (M@SHSs) by a one-pot hydrothermal process without using any anchoring molecules. Unlike other sol-gel formations, the growth rate of silica in this process is greatly reduced. It thus may bring more possibilities to introduce external metals within the silica frameworks instead of in the porous channels. By regulating the addition of metal salts in the silica nanoparticles dispersions, we have successfully synthesized stable and highly homogeneous single-metal, dual-metal, triple-metal, and quadruplemetal doped SHSs. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared. Our results offer a facile and effective strategy for preparing multi-metals as nano-catalysts. Through proper design of the doped metals in SHSs, the structures should find more applications in catalysis, drug delivery, and adsorption with unique and enhanced properties.

2.
Beilstein J Nanotechnol ; 13: 1201-1219, 2022.
Article in English | MEDLINE | ID: mdl-36348938

ABSTRACT

Quartz crystal microbalance (QCM) has been widely used for various sensing applications, including chirality detection due to the high sensitivity to nanogram or picogram mass changes, fast response, real-time detection, easy operation, suitability in different media, and low experimental cost. The sensing performance of QCM is dependent on the surface design of the recognition layers. Various strategies have been employed for studying the relationship between the structural features and the specific detection of chiral isomers. This review provides an overview of the construction of chiral sensing layers by various nanostructures and materials in the QCM system, which include organic molecules, supermolecular assemblies, inorganic nanostructures, and metal surfaces. The sensing mechanisms based on these surface nanostructures and the related potentials for chiral detection by the QCM system are also summarized.

3.
Langmuir ; 38(48): 14550-14562, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36399765

ABSTRACT

Herein, a highly sensitive volatile organic compound (VOC) gas sensor is demonstrated using immobilized ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, onto surfaces functionalized by the quaternary ammonium group -N+R, -COOH, and -NH2, i.e., N+-IL, COOH-IL, and NH2-IL, respectively. These functional groups ensure highly tunable interactions between the IL and surfaces, efficiently modulating the electrical resistance of the immobilized IL upon exposure to acetone and toluene. The immobilized IL to both acetone and toluene displays significant electronic resistance changes at a concentration of 150 ppm, falling in the order NH2-IL > N+-IL > COOH-IL for acetone while COOH-IL > NH2-IL > N+-IL for toluene. A better gaseous sensing ability is achieved in COOH-IL for toluene than acetone, while this does not hold in the case of NH2-IL and N+-IL surfaces because of the completely different ion structuring of the IL at these functionalized surfaces. The accelerated ion mobility in the IL that is immobilized onto functionalized surfaces is also responsible for the strong gaseous sensing response, which is demonstrated further by the atomic force microscopy-measured smaller friction coefficient. This is highly encouraging and suggests that ILs can be immobilized by a network formed by surface functionalization to easily and cheaply detect VOCs at ppm concentrations.


Subject(s)
Ionic Liquids , Volatile Organic Compounds , Acetone , Toluene , Gases
4.
Nanoscale ; 14(29): 10389-10398, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35819051

ABSTRACT

Fullerene-derived carbons have been demonstrated as effective electrode materials for electrocatalytic reactions. The heteroatoms in the carbon matrix are essential to enhance their electrocatalytic performance but are still challenging for effective doping strategies and understanding their synergistic effect. Herein, we regulate the phosphorus/nitrogen (P/N) doping in the carbon structure based on the control mixing of pyritic acid (PA) with the assembled diamine-C60 hollow spheres (N@FHS). After pyrolysis, the carbon spheres are shown to have a homogenous distribution of N and P (NP@CHS). The structural and molecular analysis reveals that the doping of P may facilitate the formation of graphitic N in the carbon framework. When used as electrocatalysts for the oxygen reduction reaction (ORR), NP@CHSs exhibit superior oxygen reduction reaction (ORR) performance in contrast to those of fullerene-derived carbon with single N doping and the commercial Pt/C (20 wt%) catalyst. Density functional theory (DFT) studies indicate that P/N-doping promotes the charge transfer in the carbon structure owing to its strong electronegativity. The enhanced ORR activity should be mainly due to the P- and N-coordinated neighboring C sites with the defective fullerene pentagon ring.

5.
Biosens Bioelectron ; 210: 114301, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35500308

ABSTRACT

Rapid, simple, accurate and highly sensitive detection of enzymes is essential for early screening and clinical diagnosis of many diseases. In this study, we report the fabrication of a turn-on ratiometric electrochemical sensor for the in situ determination of ß-Galactosidase (ß-Gal) based on surface engineering and the design of a molecular probe (Pygal) specific for ß-Gal recognition. First, Pygal probe was synthesized and characterized, and then co-assembled with the methylene blue (MB) internal reference probe on the surface of single-wall carbon nanotubes (SWCNT)-modified carbon fiber microelectrode (CFME). The resulting CFME/SWCNT/MB + Pygal sensor is activated in the presence of ß-Gal giving one peak at 0.33 V originating from the oxidation of the product of Pygal enzymatic hydrolysis (PyOH). Another oxidation peak attributed to MB appears simultaneously at -0.28 V allowing the construction of a ratiometric electrochemical sensor for ß-Gal detection with improved sensitivity and accuracy. The sensor showed a linear response to ß-Gal in a wide concentration range from 1.5 to 30 U L-1 and a low detection limit of 0.1 U L-1. Moreover, the sensor demonstrated excellent selectivity against several biologically relevant hydrolases and redox-active molecules. Finally, the combination of excellent electrochemical performance and favorable physicochemical properties of CFME allowed the determination of ß-Gal in the whole blood of Parkinson's Disease (PD) model mice. The workflow reported in this study provides a strategy for the design and development of sensors for the in vivo monitoring of other enzymes important for the early diagnosis of different health issues.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Parkinson Disease , Animals , Biosensing Techniques/methods , Carbon Fiber , Electrochemical Techniques/methods , Limit of Detection , Methylene Blue/chemistry , Mice , Parkinson Disease/diagnosis , beta-Galactosidase
6.
Angew Chem Int Ed Engl ; 60(47): 25028-25033, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34545674

ABSTRACT

Quartz crystal microbalance (QCM) is one of the powerful tools for the studies of molecular recognition and chiral discrimination. Its efficiency mainly relies on the design of the functional sensitive layer on the electrode surface. However, the organic sensitive layer may easily cause dissipation of oscillation or detachment and weaken the signal transfer during the molecular recognition processes. In this work, we reveal for the first time that the bare metal surface without the organic selector layer has the capability for chiral recognition in the QCM system. During the adsorption of various chiral amino acids, relatively higher selectivity of D-enantiomers on gold (Au) surface was shown by the QCM detection. Based on analyses of the surface crystalline structure and density functional theory calculations, we demonstrate that the chiral nature of Au surface plays an important role in the selective binding of specific D-amino acids. These results may open new insights on chiral detection by QCM system. It will also promote the construction of novel chiral sensing systems with both efficient detection and separation capability.

7.
J Mater Chem B ; 9(23): 4726-4734, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34095946

ABSTRACT

The proportion of Fe2+ and Fe3+ in Fe-based nanozymes is a key point in determining their catalytic activity. However, it is hard to adjust the Fe2+/Fe3+ ratio in nanozyme systems to achieve the best catalytic performance. In this work, we successfully regulate Fe2+/Fe3+ ratios in a wide range of 0.81-1.45 based on a novel porous platform of Fe doped silica hollow spheres. The homogeneous distribution and stable fixation of Fe components in Fe doped silica hollow spheres facilitate the valence regulation of Fe in the reduction heating in H2/Ar. When the Fe doped spheres (FeOx@SHSs) were used as nanozymes, different Fe2+/Fe3+ ratios have shown to influence the peroxidase-like catalytic activity greatly. The highest activity at the ratio of 1.41 should be due to the combined effects of the accelerated reaction rate by Fe2+ and the enhanced catalytic cycle efficiency by Fe3+. The FeOx@SHSs-based nanozyme is further applied to construct a facile colorimetric biosensing system, which exhibited extremely sensitive determination of glucose. This work presents an effective platform for controlling Fe valences and optimizing the peroxidase-like activity for catalytic processes or sensing systems.


Subject(s)
Colorimetry/methods , Glucose/analysis , Iron/chemistry , Metal Nanoparticles/chemistry , Peroxidases/chemistry , Limit of Detection , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Temperature
8.
Small ; 17(20): e2008036, 2021 05.
Article in English | MEDLINE | ID: mdl-33797192

ABSTRACT

Advanced fabrication of surface metal-organic complexes with specific coordination configuration and metal centers will facilitate to exploit novel nanomaterials with attractive electronic/magnetic properties. The precise on-surface synthesis provides an appealing strategy for in situ construction of complex organic ligands from simple precursors autonomously. In this paper, distinct organic ligands with stereo-specific conformation are separately synthesized through the well-known dehalogenative coupling. More interestingly, the exo-bent ligands promote the mono-iron chelated complexes with the Fe center significantly decoupled from the surface and of high spin, while the endo-bent ligands lead to bi-iron chelated ones instead with ferromagnetic properties.


Subject(s)
Coordination Complexes , Iron , Ligands , Models, Molecular , Molecular Conformation
9.
J Phys Chem Lett ; 12(1): 211-217, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33325714

ABSTRACT

Stanene is a notable two-dimensional topological insulator with a large spin-orbit-coupling-induced band gap. However, the formation of surface alloy intermediates during the epitaxial growth on noble metal substrates prevents the as-grown stanene from preserving its intrinsic electronic states. Here, we show that an intentionally prepared 3×3Au2Sn(111) alloy surface is a suitable inert substrate for growing stanene without the further formation of a complicated surface alloy by scanning tunneling microscopy. The Sn tetramer and clover-shaped Sn pentamer are intermediates for the black-phosphorene-like Sn film at a substrate temperature of <420 K, which transforms to a blue-phosphorene-like stanene with a lattice constant of 0.50 nm above 500 K. First-principles calculations reveal that the epitaxial Sn layer exhibits a lattice registry growth mode and holds a direct energy gap of ∼0.4 eV. Furthermore, interfacial charge-transfer-induced significant Rashba splitting in its electronic structure gives it great potential in spintronic applications.

10.
Nanoscale ; 12(9): 5507-5520, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32091058

ABSTRACT

A key challenge for the fabrication of flexible electrochemical capacitors is to prepare robust electrode materials with excellent integration of high specific capacitances and superior mechanical properties. Aramid nanofibers (ANFs) are emerging candidates for constructing flexible electrode materials due to their superior mechanical properties. However, the present ANF based electrode materials are generally designed by mixing ANFs with electrochemically active components, which results in an unfavorable trade-off in mechanical and electrochemical properties. In this work, we reported flexible, mechanically strong, and free-standing supercapacitor electrodes based on polyaniline (PANI) nanostructure functionalized ANF films for the first time. The flexible PANI@ANF film electrodes achieved an efficient combination of mechanical and electrochemical performance in a single platform with a specific capacitance of 441.0 F g-1 at a current density of 1 A g-1 and a tensile strength of 233.3 MPa, respectively. This kind of free-standing electrode material may have great potential in the development of flexible energy-storage devices. Furthermore, we anticipate that this study may provide insight into the functionalization of aramid nanofiber-based materials for structural energy and power systems with high mechanical performance.

11.
ACS Nano ; 14(2): 2385-2394, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32031783

ABSTRACT

In recent years, two-dimensional (2D) group VA elemental materials have attracted considerable interest from physics/chemistry and materials science communities, with particular attention paid to honeycomb blue phosphorene. To date, phosphorene is limited to its α-phase and small sizes because it can only be produced by exfoliating black phosphorus crystals. Here, we report the direct synthesis of high-quality phosphorene on a nonmetallic copper oxide substrate by molecular beam epitaxy. By combining scanning tunneling microscopy/spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations, we demonstrate the growth intermediates and electronic structures of phosphorene on Cu3O2/Cu(111). Surprisingly, the grown phosphorene has a flat honeycomb lattice, similar to graphene, which exhibits a metallic nature. We reveal that the growth mechanism and morphology of phosphorene are strongly correlated with the surface structures of prepared copper oxide, and the resulting phosphorene can be stabilized after high-temperature annealing above 600 K even in oxygen gas. The high stability is closely related to the irregular Moiré pattern and structural corrugations of phosphorene on Cu3O2/Cu(111) that efficiently relieve the surface strain. These results shed light on future fabrication of large-scale, versatile 2D structures for interconnect and device integration.

12.
Phys Chem Chem Phys ; 22(3): 1097-1106, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31894789

ABSTRACT

Supported ionic liquids (ILs) are attractive alternatives for CO2 capture and the thickness of supported IL films plays a critical role in the CO2 mass transfer rate. However, the dependence of CO2 uptake on the IL film thickness differs as the system varies. In this work, atomic force microscopy (AFM) is employed to probe the 'nanofriction coefficient' to characterize the mobility of ILs at the solid interface, in which, the smaller the nanofriction coefficient, the faster are the ionic mobility and CO2 mass transfer. A monotonic and almost linear relationship for supported IL films is obtained between the resistance of CO2 mass transfer (1/k) and the nanofriction coefficient (µ), avoiding the controversy over the effect of supported IL film thickness on CO2 adsorption. The enhanced mass transfer of CO2 adsorption at IL-solid interfaces is observed at smaller resistance 1/k and friction coefficient µ. The low-friction driven local mobility (diffusion) of ILs at solid interfaces is enhanced, promoting the exchange mixing of the ILs adsorbing CO2 with the 'blank-clean' ions of the ILs, and thus accelerating the CO2 mass transfer. The proposed correlation links the nanoscale friction with the mass transfer of CO2 adsorption, providing a fresh view on the design of ultra-low frictional supported ILs for enhanced CO2 capture and separation processes.

13.
J Phys Chem Lett ; 11(4): 1317-1329, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31945298

ABSTRACT

An atomic layer of tin in a buckled honeycomb lattice, termed stanene, is a promising large-gap two-dimensional topological insulator for realizing room-temperature quantum-spin-Hall effect and therefore has drawn tremendous interest in recent years. Because the electronic structures of Sn allotropes are sensitive to lattice strain, e.g. the semimetallic α-phase of Sn can transform into a three-dimensional topological Dirac semimetal under compressive strain, recent experimental advances have demonstrated that stanene layers on different substrates can also host various electronic properties relating to in-plane strain, interfacial charge transfer, layer thickness, and so on. Thus, comprehensive understanding of the growth mechanism at the atomic scale is highly desirable for precise control of such tunable properties. Herein, the fundamental properties of stanene and α-Sn films, recent achievements in epitaxial growth, challenges in high-quality synthesis, and possible applications of stanene are discussed.

14.
J Nanosci Nanotechnol ; 20(6): 3588-3597, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31748056

ABSTRACT

Imidazolium-based poly(ionic liquid)s were synthesized and used as sensing film for the adsorption of volatile organic compounds. Based on a quartz crystal microbalance system, the sensing properties of the imidazolium-based poly(ionic liquid)s on volatile organic compounds was assessed according to the position of imidazolium cation in the polymer chain (the main-chain or side-chain type) and the varied counterions. The results indicated that the imidazolium-based poly(ionic liquid)s films have much higher adsorption capability on volatile organic acids than other volatile organic compounds, which is due to the strong affinity between imidazolium group and the carboxyl group. The position of imidazolium cation in the polymer chain and counterions of the imidazolium-based poly(ionic liquid)s was found to be able to influence the selectivity and sensitivity of volatile organic acids. The main-chain imidazolium-based poly(ionic liquid)s were shown strengthen the adsorption of propionic acid vapor, while the counter ion of dicyanamide showed the highest selectivity on volatile organic acids. Based on the quartz crystal microbalance sensing system, the imidazoliumbased poly(ionic liquid)s film was shown capable of detecting volatile organic acids with a theoretical detection limit of about 3.1 ppb and a quick recovery time less than 40 seconds. The sensing performance is also stable for repeated usage and after long-time storage.

15.
ACS Nano ; 13(12): 14005-14012, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31794176

ABSTRACT

We report the production of fullerene microtubes (FMTs), having solid cores bisecting their tubular cavities, from solutions of mixtures of fullerene C60 and C70 and have demonstrated the structural transformation of FMTs to fullerene microhorns (FMHs) upon their exposure to alcohol/mesitylene mixtures at 25 °C. The conically shaped microhorns have hollow interiors and exhibit preferential recognition of silica particles over fullerene C70, polystyrene (PS) latex, PS hydroxylate, or PS carboxylate particles of similar dimensions due to strong electrostatic interactions between negatively charged FMHs and positively charged silica particles.

16.
ACS Nano ; 13(9): 10622-10630, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31487147

ABSTRACT

Epitaxial two-dimensional (2D) nanostructures with regular patterns show great promise as templates for adsorbate confinement. Prospectively, employing 2D semiconductors with reduced density of states leads to a long excited-state lifetime that allows us to directly image the dynamics of the adsorbate. We show that epitaxial blue phosphorene (blueP) on Au(111) provides such a platform to trap water molecules in the periodic nanopores without formation of strong bonds. The trapped water aggregate is tentatively assigned to a hexamer based on our scanning tunneling microscopy studies and first-principles calculations. Real-space observation of conformational switching of the hexamer induced by inelastic electrons is achieved by using low-temperature scanning tunneling microscopy with molecular resolution. We found a localized interfacial charge rearrangement between the water hexamer and P atoms underneath that is responsible for the reversible desorption and adsorption of water molecules by changing the sample bias polarity from positive to negative, offering a promising strategy for engineering the electronic properties of blueP.

17.
ACS Appl Mater Interfaces ; 11(20): 18053-18061, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30964981

ABSTRACT

The controlled assembly of metal nanoparticles into ordered structures interacting with biological molecules is an emerging concept in surface science. Here, bare magnetite nanoparticles (Fe3O4-NPs) were employed as nanoadhesives to capture hollow metallic nanostructures (Au-Ag nanocages) from aqueous suspensions, and these coupled nanostructures were patterned onto various types of substrate via magnetolithography. Microwires of Au-Ag nanocages patterned onto an Au substrate behaved as optical antennas, providing a plasmonic enhancement exploited in surface-enhanced infrared absorption spectroscopy (SEIRAS) to investigate the proteins cytochrome c, bilirubin oxidase, alcohol dehydrogenase, bovine serum albumin, and glucose oxidase. Chemical maps containing more than 4000 spectra, acquired within only 2 min with a focal plane array detector, indicate that proteins were adsorbed along the microwires with their secondary structure preserved according to the spatial distribution of their amide groups. We believe there are significant practical aspects of the methodology proposed here to develop an alternative label-free assay for investigating biological molecules.


Subject(s)
Gold/chemistry , Magnetite Nanoparticles/chemistry , Oxidoreductases/chemistry , Serum Albumin, Bovine/chemistry , Silver/chemistry , Animals , Cattle , Nanoparticles , Spectrophotometry, Infrared
18.
Phys Chem Chem Phys ; 20(27): 18873-18878, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29968876

ABSTRACT

A hierarchical heterostructure composed of silver nanoparticles (Ag-NPs: average diameter ∼10 nm) on fullerene nanorods (FNRs: average length ∼11 µm and average diameter ∼200 nm) was fabricated using a simple solution route. It was used as an effective single particle freestanding surface enhanced Raman scattering (SERS) substrate for the detection of target molecules (Rhodamine 6G: R6G). FNRs were formed ultra-rapidly (formation process completed in a few seconds) at a liquid-liquid interface of methanol and C60/mesitylene solution then Ag-NPs were grown directly on the surfaces of the FNRs by treatment with a solution of silver nitrate in ethanol. This unique hierarchical heterostructure allows efficient adsorption of target molecules also acting as an effective SERS substrate capable of detecting the adsorbed R6G molecules in the nanomolar concentration range. In this study, SERS spectra are acquired on an isolated single Ag-FNR for the detection of the absorbed molecule rather than from a bulk, large area film composed of silver/gold nanoparticles as used in conventional methods. Thus, this work provides a new approach for the design and fabrication of freestanding SERS substrates for molecular detection applications.

19.
Chem Commun (Camb) ; 54(56): 7822-7825, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29947371

ABSTRACT

The induced-fit accommodation of a variety of gaseous molecules including non-polar molecules has been demonstrated in porphyrin-based supramolecular architectures for the first time. Moreover, the gas uptake behaviour can be modulated by changing the central cation of porphyrin.

20.
ACS Appl Mater Interfaces ; 9(51): 44458-44465, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29210263

ABSTRACT

Fullerene C60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g-1 (at 5 mV s-1) and 290 F g-1 (at 1 A g-1) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g-1. The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...