Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 9988, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340081

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) is rising in incidence and is an increasingly common cause of cirrhosis and hepatocellular carcinoma (HCC). Alterations in the gut microbiota have been shown to correlate with the development and progression of MAFLD. However, little is known regarding differences in the gut microbiomes of MAFLD patients and healthy cohorts, and subgroups at the abnormal activity of hepatic enzymes in China. In this study, we enrolled 81 MAFLD patients and 25 healthy volunteers. The fecal microbiota was assessed using 16S rRNA gene sequencing and metagenomic sequencing. The results suggested that Ruminococcus obeum and Alistipes were most enriched in healthy individuals when compared with MAFLD patients. Microbe-set Enrichment Analysis (MSEA) results showed Dorea, Lactobacillus and Megasphaera are enriched in MAFLD group. We also found that Alistipes has negatively related to serum glucose (GLU), gamma-glutamyl transferase (GGT), and alanine aminotransferase (ALT). Moreover, the abundance of Dorea was found to be significantly overrepresented in the MAFLD patients and the degree of enrichment increased with the increasing abnormal liver enzyme. An increase in Dorea, combined with decreases in Alistipes appears to be characteristic of MAFLD patients. Further study of microbiota may provide a novel insight into the pathogenesis of MAFLD as well as a novel treatment strategy.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Microbiota , Non-alcoholic Fatty Liver Disease , Humans , RNA, Ribosomal, 16S/genetics , Bacteroidetes , Clostridiaceae
2.
Food Chem X ; 18: 100685, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37131849

ABSTRACT

Mixed fermentation using saccharomyces cerevisiae and non-saccharomyces cerevisiae has become one of the main research strategies to improve wine aroma. Hence, this study applied the mixed fermentation technique using Pichia kudriavzevii and Saccharomyces cerevisiae to brew Cabernet Sauvignon wine and to investigate the effects of inoculation timing and inoculation ratio on the polyphenolics, antioxidant activity and aroma of the resulting wine. The results showed that mixed fermentation significantly improved the amounts of flavan-3-ols. In particular, S1:5 had the highest amounts of (-)-catechin and procyanidin B1 (73.23 mg/L and 46.59 mg/L), while S1:10 had the highest (-)-epicatechin content (57.95 mg/L). Meanwhile, S1:10 showed the strongest FRAP, CUPRAC and ABTS + activities (31.46 %, 25.38 % and 13.87 % higher than that of CK, respectively). In addition, mixed fermentation also increased the amounts of phenylethanol, isoamyl alcohol and ethyl esters, which enhanced the rose-like and fruity flavor of wine. This work used a friendly non-saccharomyces cerevisiae alongside appropriate inoculation strategies to provide an alternative approach for improved wine aroma and phenolic profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...