Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(23): e2300385, 2023 09.
Article in English | MEDLINE | ID: mdl-37040018

ABSTRACT

Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H2 S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H2 S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.


Subject(s)
Hydrogen Peroxide , Hydrogen Sulfide , Hydrogen Sulfide/pharmacology , Reactive Oxygen Species , Immunotherapy , Tumor Microenvironment
2.
Angew Chem Int Ed Engl ; 61(7): e202107076, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34227715

ABSTRACT

Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.


Subject(s)
Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Photoacoustic Techniques , Tumor Hypoxia , Animals , Carbocyanines/chemical synthesis , Cell Line, Tumor , Drug Design , Fluorescent Dyes/chemical synthesis , Mammary Neoplasms, Experimental/diagnostic imaging , Mice , Mice, Nude , Molecular Structure , Optical Imaging
3.
Small ; 16(46): e2004345, 2020 11.
Article in English | MEDLINE | ID: mdl-33089606

ABSTRACT

Photoimmunotherapy (PIT) has shown enormous potential in not only eliminating primary tumors, but also inhibiting abscopal tumor growth. However, the efficacy of PIT is greatly limited by tumor hypoxia, which causes the attenuation of phototherapeutic efficacy and is a feature of the immunosuppressive tumor microenvironment (TME). In this study, one type of brand-new artificial metalloprotein nanoanalogues is developed via reasonable integration of a "phototherapy-enzymatic" RuO2 and a model antigen, ovalbumin (OVA) for enhanced PIT of cancers, namely, RuO2 -hybridized OVA nanoanalogues (RuO2 @OVA NAs). The RuO2 @OVA NAs exhibit remarkable photothermal/photodynamic capabilities under the near-infrared light irradiation. More importantly, the photoacoustic imaging and immunofluorescence staining confirm that RuO2 @OVA NAs can remarkably alleviate hypoxia via in situ catalysis of hydrogen peroxide overexpressed in the TME to produce oxygen (O2 ). This ushers a prospect of concurrently enhancing photodynamic therapy and reversing the immunosuppressive TME. Also, OVA, as a supplement to the immune stimulation induced by phototherapy, can activate immune responses. Finally, further combination with the cytotoxic T-lymphocyte-associated protein 4 checkpoint blockade is reported to effectively eliminate the primary tumor and inhibit distant tumor growth via the abscopal effect of antitumor immune responses, prolonging the survival.


Subject(s)
Metalloproteins , Oxygen , Catalysis , Cell Line, Tumor , Phototherapy
4.
Polymers (Basel) ; 11(2)2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30960279

ABSTRACT

While applying computer simulations to study semiflexible polymers, it is a primary task to determine the persistence length that characterizes the chain stiffness. One frequently asked question concerns the relationship between persistence length and the bending constant of applied bending potential. In this paper, theoretical persistence lengths of polymers with two different bending potentials were analyzed and examined by using lattice Monte Carlo simulations. We found that the persistence length was consistent with theoretical predictions only in bond fluctuation model with cosine squared angle potential. The reason for this is that the theoretical persistence length is calculated according to a continuous bond angle, which is discrete in lattice simulations. In lattice simulations, the theoretical persistence length is larger than that in continuous simulations.

5.
ACS Macro Lett ; 5(4): 450-454, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-35607226

ABSTRACT

A novel multifunctional aggregation-induced emission (AIE) nanoaggregate for targeted imaging and enzyme-triggered chemotherapy was successfully fabricated via a one-step assembly. In this system, a quaternary ammonium-modified tetraphenylethene derivative (QA-TPE) acted as the AIE fluorophore as well as the chemotherapeutic agent, and a water-soluble acidic polysaccharide, hyaluronic acid (HA) acted as the aggregation-inducing scaffold, AIE turn-on agent, and targeting agent for CD44 receptor-mediated cancer cells. More importantly, HA endowed the QA-TPE/HA nanoaggregate both good biocompatibility and hysteretic chemotherapy activity, which were achieved by controlling the release of QA-TPE using the endogenous HAase in CD44 receptor-mediated cancer cells.

6.
Chemistry ; 21(52): 18993-9, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26514914

ABSTRACT

Solid-state fluorescence sensing is one of the most appealing detection techniques because of its simplicity and convenience in practical operation. Herein, we report the development of a red-emitting carbon dots (RCDs)-based material as a solid-state fluorescence sensor for the selective probing of gaseous ammonia. The RCDs were prepared by a low-cost, one-step carbonization method using sugar cane bagasse as the carbon precursor. The pristine RCDs were then directly coated on polyvinylidene fluoride membrane to produce a new fluorescence sensor capable of selectively distinguishing toxic gaseous ammonia from other analyte vapors through sensitive fluorescence quenching with a low detection limit. More importantly, the interfacial response mechanism occurring on the surface of the RCDs has been studied by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman measurements. The results indicate that fluorescence quenching in the RCDs might result from ammonia-induced Michael addition through insertion of N into the C=C group and deprotonation of the carboxyl group. To the best of our knowledge, this is the first report that provides clear insight into the mechanism of surface chemistry on CDs in the solid state.

7.
J Mater Chem B ; 3(18): 3767-3776, 2015 May 14.
Article in English | MEDLINE | ID: mdl-32262851

ABSTRACT

The construction of advanced phototherapy systems with high therapeutic efficacy toward cancer and low side effects, especially targeted species, is highly desirable. Herein, we developed one kind of water-soluble hyaluronic acid-hybridized polyaniline nanoparticles (HA-PANI NPs) as a nanoplatform for photothermal therapy (PTT) with targeted specificity of a CD44-mediated cancer cell. The water-soluble HA-PANI NPs were fabricated by one-step oxidative polymerization using aniline as a polymerizable monomer and HA as a stabilizer and targeted agent, where non-covalent electrostatic interaction between the negatively charged polymer HA and the cationic polymer PANI drives the formation of HA-PANI NPs. It was demonstrated that approximately spherical HA-PANI NPs are well-dispersed in aqueous solutions, with average hydrodynamic diameters of around 100 nm. Besides, HA-PANI NPs have negligible cytotoxicity in vitro, which facilitates biomedical applications with low toxicity. We studied the in vitro photothermal cell-killing efficacy of HA-PANI NPs by MTT assay and confocal microscopy measurement. The results reveal that HA-PANI NPs can selectively kill the cancer cells of HeLa and HCT-116 cells rather than normal cells of HFF cells upon exposure to a NIR 808 nm laser. The efficient intracellular intake of the HA-PANI NPs by both HeLa and HCT-116 cells are observed, confirming their targeting ability for CD44-overexpressing cancer cells. Furthermore, the results of in vivo photothermal ablation of tumors show excellent treatment efficacy, indicating that the HA-PANI NPs can be considered as an extremely promising nanoplatform for targeted PTT of cancer.

8.
ACS Appl Mater Interfaces ; 6(20): 18008-17, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25248075

ABSTRACT

The biomedical applications of carbon nanomaterials, especially integrating noninvasive photothermal therapy (PTT) and photodynamic therapy (PDT), into a single system have enormous potential in cancer therapy. Herein, we present a novel and facile one-step method for the preparation of water-soluble single-walled carbon nanohorns (SWNHs) and metal phthalocyanines (MPc) hybrid for PTT and PDT. The hydrophilic MPc, tetrasulfonic acid tetrasodium salt copper phthalocyanine (TSCuPc), is coated on the surface of SWNHs via noncovalent π-π interaction using the sonication method. In this PTT/PDT nanosystem, SWNHs acts as a photosensitizer carrier and PTT agent, while TSCuPc acts as a hydrophilic and PDT agent. The EPR results demonstrated that the generated reactive oxygen species (ROS) not only from the photoinduced electron transfer process from TSCuPc to SWNHs but also from SWNHs without exciting TSCuPc to its excited state. The test of photothermal conversion proved that not only do SWNHs contribute to the photothermal therapy (PTT) effect, TSCuPc probably also contributes to that when it coats on the surface of SWNHs upon exposure to a 650-nm laser. More importantly, the results of in vitro cell viability revealed a significantly enhanced anticancer efficacy of combined noninvasive PTT/PDT, indicating that the SWNHs-TSCuPc nanohybrid is a hopeful candidate material for developing an efficient and biocompatible nanoplatform for biomedical application.


Subject(s)
Hyperthermia, Induced , Indoles/chemistry , Nanoparticles/therapeutic use , Nanotechnology/methods , Photochemotherapy , Phototherapy , Water/chemistry , Carbon/chemistry , Cell Death/drug effects , Electron Spin Resonance Spectroscopy , HeLa Cells , Humans , Isoindoles , Microscopy, Confocal , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Photobleaching , Photoelectron Spectroscopy , Solubility , Spectrum Analysis, Raman , Thermogravimetry , Time Factors
9.
J Mater Chem B ; 2(41): 7141-7148, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-32261792

ABSTRACT

In this paper, we present a new and facile one-step method for the fabrication of a water-soluble graphene-phthalocyanine (GR-Pc) hybrid material by simply sonicating GR with a hydrophilic Pc, tetrasulfonic acid tetrasodium salt copper phthalocyanine (TSCuPc). In the resultant hybrid material, TSCuPc is coated on the skeleton of pristine GR via non-covalently π-π interaction, detailedly characterized by UV-vis/Raman spectra, X-ray photoelectron spectroscopy (XPS), etc. The obtained GR-Pc hybrid (GR-TSCuPc) is applied for photothermal therapy (PTT) and photodynamic therapy (PDT). In this PTT/PDT system, both GR and TSCuPc operate as multifunctional agents: GR acts as a photosensitizer carrier and PTT agent, while TSCuPc acts as a hydrophilic PDT agent. Furthermore, the results of cell viability show that the phototherapy effect of GR-TSCuPc is observably higher than that of free TSCuPc, indicating that combined noninvasive PTT/PDT exhibits better anti-cancer efficacy in vitro. Such results highlight that this work provide a facile method to develop efficacious dual-modality carbon nanoplatform for developing cancer therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...