Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
Mol Cell Biochem ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231894

ABSTRACT

The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.

2.
Acta Histochem ; 126(5-7): 152189, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39197328

ABSTRACT

Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.


Subject(s)
Acute Lung Injury , Burns , Exosomes , Ferroptosis , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Umbilical Cord , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Humans , Burns/complications , Burns/metabolism , Rats , Umbilical Cord/cytology , Male , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Iron/metabolism
3.
Acad Radiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964984

ABSTRACT

RATIONALE AND OBJECTIVES: The aim of this study was to develop and validate a nomogram for predicting emergent conversion to general anaesthesia (GA) in stroke patients during thrombectomy. METHODS: In this retrospective study, 458 patients (320 and 138 were randomised into the training and validation cohorts) were enroled. Univariable and multivariable logistic regression analyses were employed to identify risk factors for emergent conversion to GA. Subsequently, a nomogram was constructed based on the identified risk factors. The discriminative ability, calibration, and clinical utility of the nomogram were assessed in both the training and validation cohorts using receiver operating characteristic (ROC) curve analysis, Hosmer-Lemeshow test, and decision curve analysis (DCA). RESULTS: The emergent conversion to GA occurred in 56 cases (12.2%). In the training cohort, four independent predictors of emergent conversion to GA were identified and incorporated into the nomogram: core infarct volume > 70 mL, severe aphasia, severe cerebral vessel tortuosity, and vertebrobasilar occlusion. The ROC curves illustrated area under curve values of 0.931 (95% CI: 0.863-0.998) and 0.893 (95% CI: 0.852-0.935) for the training and validation cohorts, respectively. Hosmer-Lemeshow testing resulted in average absolute errors of 0.028 and 0.031 for the two cohorts. DCA demonstrated the nomogram's exceptional utility and accuracy across a majority of threshold probabilities. CONCLUSION: The constructed nomogram displayed promising predictive accuracy for emergent conversion to GA in stroke patients during thrombectomy, thereby providing potential assistance for clinical decision-making.

4.
Nat Commun ; 15(1): 5887, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003305

ABSTRACT

Memory engrams are a subset of learning activated neurons critical for memory recall, consolidation, extinction and separation. While the transcriptional profile of engrams after learning suggests profound neural changes underlying plasticity and memory formation, little is known about how memory engrams are selected and allocated. As epigenetic factors suppress memory formation, we developed a CRISPR screening in the hippocampus to search for factors controlling engram formation. We identified histone lysine-specific demethylase 4a (Kdm4a) as a negative regulator for engram formation. Kdm4a is downregulated after neural activation and controls the volume of mossy fiber boutons. Mechanistically, Kdm4a anchors to the exonic region of Trpm7 gene loci, causing the stalling of nascent RNAs and allowing burst transcription of Trpm7 upon the dismissal of Kdm4a. Furthermore, the YTH domain containing protein 2 (Ythdc2) recruits Kdm4a to the Trpm7 gene and stabilizes nascent RNAs. Reducing the expression of Kdm4a in the hippocampus via genetic manipulation or artificial neural activation facilitated the ability of pattern separation in rodents. Our work indicates that Kdm4a is a negative regulator of engram formation and suggests a priming state to generate a separate memory.


Subject(s)
Hippocampus , Memory , TRPM Cation Channels , Animals , Hippocampus/metabolism , Mice , Memory/physiology , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Humans , Down-Regulation/genetics , Neurons/metabolism , Male , Mice, Inbred C57BL , Rats , CRISPR-Cas Systems , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neuronal Plasticity/genetics , HEK293 Cells , Histone Demethylases
5.
Maxillofac Plast Reconstr Surg ; 46(1): 18, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733452

ABSTRACT

BACKGROUND: Hemifacial microsomia is characterized by the hypoplasia of the mandible and temporomandibular joint, involving a variety of abnormalities of the craniofacial area. Since it gradually worsens as patients grow, it is necessary to understand the characteristics of facial bone growth and facial deformity in hemifacial microsomia patients in order to determine appropriate treatment timing and treatment methods. MAIN BODY: Appropriate classification of hemifacial microsomia would facilitate accurate diagnosis, selection of treatment methods, and prognosis prediction. Therefore, in this article, we review previously published hemifacial microsomia classification and provide an overview of the growth of the facial skeleton and the characteristics of hemifacial microsomia-related facial deformities. The OMENS system is the most comprehensive classification method based on the characteristics of hemifacial microsomia deformity, but it needs to be improved to include malar/midface abnormalities and nerve involvement. In hemifacial microsomia, growth is progressing on the affected side, but to a lesser degree than the unaffected side. Therefore, surgical intervention in growing patients should be performed selectively according to the severity of deformity. CONCLUSION: Understanding growth patterns is important to develop appropriate treatment protocols for correcting asymmetry in adult patients and to minimize secondary anomalies in growing patients.

6.
Heliyon ; 10(10): e30956, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818205

ABSTRACT

Objective: This study aims to investigate the predictive performance of machine learning in predicting the occurrence of systemic inflammatory response syndrome (SIRS) and urosepsis after percutaneous nephrolithotomy (PCNL). Methods: A retrospective analysis was conducted on patients who underwent PCNL treatment between January 2016 and July 2022. Machine learning techniques were employed to establish and select the best predictive model for postoperative systemic infection. The feasibility of using relevant risk factors as predictive markers was explored through interpretability with Machine Learning. Results: A total of 1067 PCNL patients were included in this study, with 111 (10.4 %) patients developing SIRS and 49 (4.5 %) patients developing urosepsis. In the validation set, the risk model based on the GBM protocol demonstrated a predictive power of 0.871 for SIRS and 0.854 for urosepsis. Preoperative and postoperative platelet changes were identified as the most significant predictors. Both thrombocytopenia and thrombocytosis were found to be risk factors for SIRS or urosepsis after PCNL. Furthermore, it was observed that when the change in platelet count before and after PCNL surgery exceeded 30*109/L (whether an increase or decrease), the risk of developing SIRS or urosepsis significantly increased. Conclusion: Machine learning can be effectively utilized for predicting the occurrence of SIRS or urosepsis after PCNL. The changes in platelet count before and after PCNL surgery serve as important predictors.

7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646758

ABSTRACT

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Subject(s)
Oryza , Rivers , Soil , Wetlands , Soil/chemistry , China , Rivers/chemistry , Oryza/growth & development , Oryza/chemistry , Environmental Monitoring , Agriculture/methods , Phosphorus/analysis , Phosphorus/chemistry , Carbon/analysis , Carbon/chemistry
8.
Nanoscale ; 16(5): 2185-2219, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38226715

ABSTRACT

MOF-based photoelectrocatalysis (PEC) using CO2 as an electron donor offers a green, clean, and extensible way to make hydrocarbon fuels under more tolerant conditions. Herein, basic principles of PEC reduction of CO2 and the preparation methods and characterization techniques of MOF-based materials are summarized. Furthermore, three applications of MOFs for improving the photoelectrocatalytic performance of CO2 reduction are described: (i) as photoelectrode alone; (ii) as a co-catalyst of semiconductor photoelectrode or as a substrate for loading dyes, quantum dots, and other co-catalysts; (iii) as one of the components of heterojunction structure. Challenges and future wave surrounding the development of robust PEC CO2 systems based on MOF materials are also discussed briefly.

9.
Br J Pharmacol ; 181(7): 1107-1127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37766518

ABSTRACT

BACKGROUND AND PURPOSE: Psoriasis is a common autoimmune skin disease that significantly diminishes patients' quality of life. Interactions between primary afferents of the somatosensory system and the cutaneous immune system mediate the pathogenesis of psoriasis. This study aims to elucidate the molecular mechanisms of how primary sensory neurons regulate psoriasis formation. EXPERIMENTAL APPROACH: Skin and total RNA were extracted from wild-type (WT) and ASH1-like histone lysine methyltransferase (Ash1l+/- ) mice in both naive and imiquimod (IMQ)-induced psoriasis models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence-activated cell sorting (FACS) were then performed. Microfluidic chamber coculture was used to investigate the interaction between somatosensory neurons and bone marrow dendritic cells (BMDCs) ex vivo. Whole-cell patch clamp recordings were used to evaluate neuronal excitability after Ash1L haploinsufficiency in primary sensory neurons. KEY RESULTS: The haploinsufficiency of ASH1L, a histone methyltransferase, in primary sensory neurons causes both neurite hyperinnervation and increased neuronal excitability, which promote miR-let-7b release from primary afferents in the skin in a neuronal activity-dependent manner. With a 'GUUGUGU' core sequence, miR-let-7b functions as an endogenous ligand of toll-like receptor 7 (TLR7) and stimulates the activation of dermal dendritic cells (DCs) and interleukin (IL)-23/IL-17 axis, ultimately exacerbating the symptoms of psoriasis. Thus, by limiting miR-let-7b release from primary afferents, ASH1L prevents dermal DC activation and ameliorates psoriasis. CONCLUSION AND IMPLICATIONS: Somatosensory neuron ASH1L modulates the cutaneous immune system by limiting neuronal activity-dependent release of miR-let-7b, which can directly activate dermal DCs via TLR7 and ultimately lead to aggravated psoriatic lesion.


Subject(s)
MicroRNAs , Psoriasis , Humans , Animals , Mice , Toll-Like Receptor 7/genetics , Quality of Life , Psoriasis/etiology , Psoriasis/pathology , Skin/pathology , MicroRNAs/genetics , Neurons/pathology , Disease Models, Animal , DNA-Binding Proteins , Histone-Lysine N-Methyltransferase
10.
Gut and Liver ; : 621-631, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1042911

ABSTRACT

Background/Aims@#Functional dyspepsia (FD) has long been regarded as a syndrome because its pathophysiology is multifactorial. However, recent reports have provided evidence that changes in the duodenal ecosystem may be the key. This study aimed to identify several gastrointestinal factors and biomarkers associated with FD, specifically changes in the duodenal ecosystem that may be key to understanding its pathophysiology. @*Methods@#In this case-control study, 28 participants (12 with FD and 16 healthy control individuals) were assessed for dietary nutrients, gastrointestinal symptom severity, immunological status of the duodenal mucosa, and microbiome composition from oral, duodenal, and fecal samples. Integrated data were analyzed using immunohistochemistry, real-time polymerase chain reaction, 16S rRNA sequencing, and network analysis. @*Results@#Duodenal mucosal inflammation and impaired expression of tight junction proteins were confirmed in patients with FD. The relative abundance of duodenal Streptococcus (p=0.014) and reductions in stool Butyricicoccus (p=0.047) were confirmed. These changes in the gut microbiota were both correlated with symptom severity. Changes in dietary micronutrients, such as higher intake of valine, were associated with improved intestinal barrier function and microbiota. @*Conclusions@#This study emphasizes the relationships among dietary nutrition, oral and gut microbiota, symptoms of FD, impaired function of the duodenal barrier, and inflammation. Assessing low-grade inflammation or increased permeability in the duodenal mucosa, along with changes in the abundance of stool Butyricicoccus, is anticipated to serve as effective biomarkers for enhancing the objectivity of FD diagnosis and monitoring.

11.
J Ethnopharmacol ; 319(Pt 3): 117353, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37907145

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mushrooms in the genus Hericium are used as functional food and traditional medicines for a long history in East Asian countries such as China, India, Japan, and Korea. Some species of Hericium are called as monkey head mushroom (Houtougu) in China and Yamabushitake in Japan, which are traditionally considered as rare and precious health promoting food and medicinal materials for the treatment of dyspepsia, insomnia, chronic gastritis, and digestive tract tumors. THE AIM OF THE REVIEW: This review aims to summarize the ethnopharmacology and structural diversity of secondary metabolites from Hericium species, as well as the pharmacological activities of the crude extracts and pure compounds from Hericium species in recent years. MATERIALS AND METHODS: All the information was gathered by searching Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar databases and other published materials (books and Ph.D. and M. Sc. Dissertations) using the keywords "Hericium", "Traditional uses", "Chemical composition", "Quality control" and "Pharmacological activity" (1971-May 2023). The species name was checked with https://www.mycobank.org/. RESULTS: The traditional uses of Hericium species were summarized, and 230 secondary metabolites from Hericium species were summarized and classified into six classes, mainly focusing on their chemical diversity, biosynthesis, biological activities. The modern pharmacological experiments in vivo or in vitro on their crude and fractionated extracts showed that the chemical components from Hericium species have a broad range of bioactivities, including neuroprotective, antimicrobial, anticancer, α-glucosidase inhibitory, antioxidant, and anti-inflammatory activities. CONCLUSIONS: The secondary metabolites discovered from Hericium species are highly structurally diverse, and they have the potential to be rich resources of bioactive fungal natural products. Moreover, the unveiled bioactivities of their crude extracts and pure compounds are closely related to critical human health concerns, and in-depth studies on the potential lead compounds, mechanism of pharmacological effects and pharmaceutical properties are clearly warranted.


Subject(s)
Hericium , Phytotherapy , Humans , Ethnopharmacology , Medicine, Traditional , Plant Extracts/therapeutic use , Phytochemicals/therapeutic use
12.
Nanoscale ; 16(3): 1058-1079, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38126461

ABSTRACT

Transforming CO2 into renewable fuels or valuable carbon compounds could be a practical means to tackle the issues of global warming and energy crisis. Photocatalytic CO2 reduction is more energy-efficient and environmentally friendly, and offers a broader range of potential applications than other CO2 conversion techniques. Ferroelectric materials, which belong to a class of materials with switchable polarization, are attractive candidates as catalysts due to their distinctive and substantial impact on surface physical and chemical characteristics. This review provides a concise overview of the fundamental principles underlying photocatalysis and the mechanism involved in CO2 reduction. Additionally, the composition and properties of ferroelectric materials are introduced. This review expands on the research progress in using ferroelectric materials for photocatalytic reduction of CO2 from three perspectives: directly as a catalyst, by modification, and construction of heterojunctions. Finally, the future potential of ferroelectric materials for photocatalytic CO2 reduction is presented. This review may be a valuable guide for creating reasonable and more effective photocatalysts based on ferroelectric materials.

13.
Learn Mem ; 30(12): 325-337, 2023 12.
Article in English | MEDLINE | ID: mdl-38114331

ABSTRACT

Memory retrieval is strikingly susceptible to external states (environment) and internal states (mood states and alcohol), yet we know little about the underlying mechanisms. We examined how internally generated states influence successful memory retrieval using the functional magnetic resonance imaging (fMRI) of laboratory mice during memory retrieval. Mice exhibited a strong tendency to perform memory retrieval correctly only in the reinstated mammillary body-inhibited state, in which mice were trained to discriminate auditory stimuli in go/no-go tasks. fMRI revealed that distinct auditory cues engaged differential brain regions, which were primed by internal state. Specifically, a cue associated with a reward activated the lateral amygdala, while a cue signaling no reward predominantly activated the postsubiculum. Modifying these internal states significantly altered the neural activity balance between these regions. Optogenetic inhibition of those regions in the precue period blocked the retrieval of type-specific memories. Our findings suggest that memory retrieval is under the control of two interrelated neural circuits underlying the neural basis of state-dependent memory retrieval.


Subject(s)
Brain , Memory , Mice , Animals , Memory/physiology , Brain/physiology , Cues , Brain Mapping , Magnetic Resonance Imaging
14.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960452

ABSTRACT

Laser altimetry data from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) contain a lot of noise, which necessitates the requirement for a signal photon extraction method. In this study, we propose a density clustering method, which combines slope and elevation information from optical stereo images and adaptively adjusts the neighborhood search direction in the along-track direction. The local classification density threshold was calculated adaptively according to the uneven spatial distribution of noise and signal density, and reliable surface signal points were extracted. The performance of the algorithm was validated for strong and weak beam laser altimetry data using optical stereo images with different resolutions and positioning accuracies. The results were compared qualitatively and quantitatively with those obtained using the ATL08 algorithm. The signal extraction quality was better than that of the ATL08 algorithm for steep slope and low signal-to-noise ratio (SNR) regions. The proposed method can better balance the relationship between recall and precision, and its F1-score was higher than that of the ATL08 algorithm. The method can accurately extract continuous and reliable surface signals for both strong and weak beams among different terrains and land cover types.

15.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2985-2992, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997409

ABSTRACT

The temperature sensitivity of soil carbon mineralization (Q10) is an important index to evaluate the responses of ecosystem carbon cycling to climate change. We examined the effects of three electron acceptors [SO42-, NO3- and Fe(Ⅲ)] addition on the Q10 value of anaerobic carbon mineralization of Phragmites australis community soil (0-10 cm) in the Yellow River Estuary wetland with the closed culture-gas chromatography method. The results showed that the three electron acceptors addition inhibited the production of CO2 and CH4 during the 48-day culture period, with a decrease of 17.3%-20.8% for CO2 and 29.2%-36.2% for CH4. Generally, the CO2 production differed with the concentrations of electron acceptors, while CH4 production differed with the type of electron acceptors. The CO2:CH4 ratios were significantly different with temperature, indicating an obvious temperature dependence for the anaerobic carbon mineralization pathway. The Q10 values of CO2 and CH4 production under three electron acceptor additions ranged from 1.08 to 1.11 and from 1.19 to 1.37, respectively, showing an increasing trend compared with the control. The type and concentration of electron acceptors affected the temperature dependence of CO2 production, while electron acceptors affected that of CH4 production. It is suggested that the input of reducing salts would retard the mineralization loss of organic carbon in estuary freshwater wetlands under the background of climate change, but enhance the sensitivity of carbon mineralization to increasing temperature.


Subject(s)
Soil , Wetlands , Soil/chemistry , Rivers , Ecosystem , Carbon Dioxide/analysis , Carbon/analysis , Estuaries , Temperature , Anaerobiosis , Electrons , Ferric Compounds , China , Methane/analysis
16.
Sci Rep ; 13(1): 15461, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726372

ABSTRACT

The effects of menopausal hormone therapy (MHT) on non-alcoholic fatty liver disease (NAFLD) were compared based on the route of estrogen administration. The study included 368 postmenopausal women who received MHT for 12 months. Patients were divided into transdermal (n = 75) and oral (n = 293) groups based on the estrogen route. Changes in the prevalence of NAFLD were compared between the two groups before and after 12 months of MHT. In addition, differences in the progression of NAFLD after MHT based on the dose of estrogen and type of progestogen were evaluated in the oral group. After MHT, the prevalence of NAFLD decreased from 24 to 17.3% in the transdermal group but increased from 25.3 to 29.4% in the oral group. Little or no change was found in clinical characteristics and laboratory tests in the transdermal group during MHT. However, serum levels of total cholesterol and low-density lipoprotein cholesterol decreased and triglycerides and high-density lipoprotein cholesterol increased significantly in the oral group. Furthermore, changes in the prevalence of NAFLD were not significantly different based on the dose of estrogen or type of progestogen. Our findings indicate that transdermal estrogen can be beneficial in terms of NAFLD progression.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Female , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/epidemiology , Progestins , Estrogens , Cholesterol, HDL , Menopause
17.
Huan Jing Ke Xue ; 44(8): 4698-4705, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694662

ABSTRACT

Carbon (C), nitrogen (N), and phosphorus (P) are important nutrients, and their ecological stoichiometric characteristics can reflect the quality and fertility capacity of soil, which is critical to understanding the stable mechanisms of estuarine wetland ecosystems. Under global changes, the increase in salinity and flooding caused by sea level rise will lead to changes in biogeochemical processes in estuarine wetlands, which is expected to affect the ecological stoichiometric characteristics of soil C, N, and P and ultimately interfere with the stability of wetland ecosystems. However, it remains unclear how the C, N, and P ecological stoichiometric characteristics respond to the water-salt environment in estuarine wetlands. We differentiated changes in the C, N, and P ecological stoichiometric characteristics through an ex-situ culture experiment for 23 months in the Yellow River Estuary Wetland. The five sites with distinct tidal hydrology were selected to manipulate translocation of soil cores from the freshwater marsh to high-, middle-, and low-tidal flats in June 2019. The results showed that soil water content (SWC); electrical conductivity (EC); and C, N, and P ecological stoichiometric characteristics of freshwater marsh soil significantly changed after translocation for 23 months. SWC decreased on the high- and middle-tidal flats (P<0.05) and increased on the low-tidal flat (P<0.05). EC increased to different degrees on all three tidal flats (P<0.05). Soil total organic carbon (TOC) and total nitrogen (TN) were significantly lower on the high-tidal flat (P<0.05), whereas total phosphorus (TP) was significantly lower on the middle- and high-tidal flats (P<0.05). C:N was decreased on the high- and middle-tidal flats (P<0.05); C:P and N:P were lower on the high-tidal flat; and all C, N, and P ecological stoichiometric characteristics showed no change on the low-tidal flat (P>0.05). Pearson's analysis showed that the ecological stoichiometric characteristics of C, N, and P were related to some properties of soil over the culture sites. The PLS-SEM model showed that the water-salt environment had different effects on soil C:N, C:P, and N:P through the main pathways of negative effects on soil TOC and TP. The results suggest that sea level rise may impact the C, N, and P ecological stoichiometric characteristics in freshwater marsh soil, resulting in some possible changes in the nutrient cycles of estuarine wetlands.

18.
Front Mol Biosci ; 10: 1235428, 2023.
Article in English | MEDLINE | ID: mdl-37577749

ABSTRACT

Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.

19.
Technol Health Care ; 31(5): 1855-1865, 2023.
Article in English | MEDLINE | ID: mdl-37125582

ABSTRACT

BACKGROUND: The microsurgical treatment of paraclinoid aneurysms can be challenging due to the anatomical structures that surround them. OBJECTIVE: This study compared the clinical and angiographic outcomes of unruptured paraclinoid aneurysms treated with enterprise (EP) stents and low-profile visualized intraluminal support (LVIS) stents. METHODS: A retrospective analysis of the clinical and radiological data from 133 patients with 139 unruptured paraclinoid aneurysms, who received an EP or an LVIS stent between January 2017 and June 2021 at Taizhou People's Hospital, was performed. Immediate postoperative and follow-up angiographic results were analyzed retrospectively using the Raymond-Roy occlusion classification (RROC). Any complications following the procedure and the patients' clinical outcomes were noted. RESULTS: Enterprise stents were used for stent-assisted coiling in 64 patients with 68 aneurysms and LVIS stents were used in 69 patients with 71 aneurysms. Both groups exhibited an increase in the proportion of aneurysms meeting the criteria for RROC class I, but the LVIS group demonstrated a higher rate of aneurysms meeting the class I criteria compared with the EP group, both on immediate postoperative angiography (45.1% vs. 11.8%, p< 0.001) and on follow-up angiography (94.9% vs. 80.6%, p= 0.025). Procedure-related complications were experienced by 9.4% of patients in the EP group (one coil prolapse, two parent artery occlusions, and three thromboembolic events), and 8.7% of patients in the LVIS group (three stent-related thrombosis and three thromboembolic events). There were no statistically significant differences between the two groups in relation to perioperative complications (p= 0.746) or favorable clinical outcomes (p= 0.492). CONCLUSION: A greater proportion of aneurysms in the LVIS group met the criteria for RROC class I compared with the EP group. There is no significant difference in procedural complications or clinical outcomes between EP and LVIS stents. Although no aneurysm recurrence was observed during the short follow-up period, continued monitoring is required.


Subject(s)
Endovascular Procedures , Intracranial Aneurysm , Humans , Retrospective Studies , Intracranial Aneurysm/surgery , Treatment Outcome , Cerebral Angiography/methods , Stents , Endovascular Procedures/methods
20.
Phytochemistry ; 212: 113730, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37220864

ABSTRACT

Five previously undescribed pyridone derivatives, tolypyridones I-M, were identified from the solid rice medium fermented by Tolypocladium album dws120, along with two known compounds tolypyridone A (or trichodin A) and pyridoxatin. Their planar structures and partial relative configurations have been determined by careful interpretation of their spectroscopic data. The full assignment of the relative and absolute configurations of tolypyridones I-M was achieved by gauge-independent atomic orbital 13C NMR calculation, quantitative nuclear Overhauser effects based interatomic distance calculation, and electronic circular dichroism calculation. In addition, we have fully determined the configuration of tolypyridone A by X-ray diffraction analysis. In bioassay, tolypyridones I was able to restore cell viability and inhibit the release of alanine aminotransferase and aspartate aminotransferase for ethanol-induced LO2 cells, suggesting its potential as a liver protective agent.


Subject(s)
Hypocreales , Pyridones , Pyridones/pharmacology , Pyridones/chemistry , Magnetic Resonance Spectroscopy , Liver , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL