Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
ACS Sens ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809143

ABSTRACT

Ultrasensitive photoelectric detection of nitrogen dioxide (NO2) with PHI under visible light irradiation at room temperature (RT) remains an ongoing challenge due to the low charge separation and scarce adsorption sites. In this work, a dimensionally matched ultrathin CoNiHHTP MOF/PHI Z-scheme heterojunction is successfully constructed by taking advantage of the π-π interactions existing between the CoNiHHTP MOF and PHI. The amount-optimized heterojunction possesses a record detection limit of 1 ppb (response = 15.6%) for NO2 under 405 nm irradiation at RT, with reduced responsive (3.6 min) and recovery (2.7 min) times, good selectivity and reversibility, and long-time stability (150 days) compared with PHI, even superior to others reported at RT. Based on the time-resolved photoluminescence spectra, in situ X-ray photoelectron spectra, and diffuse reflectance infrared Fourier transform spectroscopy results, the resulting sensing performance is attributed to the favorable Z-scheme charge transfer and separation. Moreover, the Ni nodes favorably present in adjacent metal sites between the lamellae contribute to charge transfer and redistribution, whereas Co nodes could act as selective centers for promoted adsorption of NO2. Interestingly, it is confirmed that the CoNiHHTP MOF/PHI heterojunction could effectively reduce the influence of O2 in the gas-sensitive reaction due to their unique bimetallic (Co and Ni) nodes, which is also favorable for the improved sensing performances for NO2. This work provides a feasible strategy to develop promising PHI-based optoelectronic gas sensors at RT.

2.
Carbohydr Polym ; 333: 121974, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494227

ABSTRACT

Astragalus membranaceus polysaccharide (APS) possesses excellent immunomodulatory activity. However, there are several studies on the structural characterization of APS. Here, we aimed to elucidate the repeating units of polysaccharides (APS1, 106.5 kDa; APS2, 114.5 kDa) obtained from different Astragalus membranaceus origins and further investigated their immunomodulatory activities. Based on structural analysis, types of the two polysaccharides were identified as arabinogalactan-I (AG-I) and arabinogalactan-II (AG-II), and co-elution of arabinogalactans (AGs) and α-glucan was observed. The backbone of AG-I was 1,4-linked ß-Galp occasionally substituted by α-Araf at O-2 and/or O-3. AG-II was a highly branched polysaccharide with long branches of α-Araf, which were attached to the O-3 of 1,6-linked ß-Galp of the backbone. The presence of AGs in A. membranaceus was confirmed for the first time. The two polysaccharides could promote the expression of IL-6, IL-1ß and TNF-α in RAW264.7 cells via MAPKs and NF-κB signaling pathways. The constants for APS1 and APS2 binding to Toll-like receptor 4 (TLR4) were 1.83 × 10-5 and 2.08 × 10-6, respectively. Notably, APS2 showed better immunomodulatory activity than APS1, possibly because APS2 contained more AGs. Hence, the results suggested that AGs were the vital components of APS in the immunomodulatory effect.


Subject(s)
Astragalus propinquus , Galactans , Galactans/pharmacology , Galactans/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction
3.
Lipids Health Dis ; 23(1): 49, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38365763

ABSTRACT

Globally, obesity and asthma pose significant health challenges, with obesity being a key factor influencing asthma. Despite this, effective treatments for obese asthma, a distinct phenotype, remain elusive. Since the discovery of transient receptor potential (TRP) channels in 1969, their value as therapeutic targets for various diseases has been acknowledged. TRP channels, present in adipose tissue cells, influence fat cell heat production and the secretion of adipokines and cytokines, which are closely associated with asthma and obesity. This paper aims to investigate the mechanisms by which obesity exacerbates asthma-related inflammation and suggests that targeting TRP channels in adipose tissue could potentially suppress obese asthma and offer novel insights into its treatment.


Subject(s)
Asthma , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/genetics , Obesity/complications , Obesity/genetics , Asthma/drug therapy , Asthma/complications , Adipose Tissue , Macrophages , Inflammation/complications
4.
Sci Adv ; 9(40): eadi6586, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37792941

ABSTRACT

Apoptotic inhibition and immune evasion have particular importance to efficient viral infection, while a dilemma often faced by viruses is that inhibiting apoptosis can up-regulate antiviral immune signaling. Herein, we uncovered that in addition to inhibiting caspase-8/extrinsic apoptosis, human cytomegalovirus (HCMV)-encoded UL36 suppresses interferon regulatory factor 3 (IRF3)-dependent immune signaling by directly targeting IRF3 to abrogate IRF3 interaction with stimulator of interferon genes or TANK-binding kinase 1 and inhibit IRF3 phosphorylation/activation. Although UL36-mediated caspase-8/extrinsic apoptosis inhibition enhances immune signaling, the immunosuppressing activity of UL36 counterbalances this immunoenhancing "side effect" undesirable for virus. Furthermore, we used mutational analyses to show that only the wild-type, but not the UL36 mutant losing either inhibitory activity, is sufficient to support effective HCMV replication in cells, showing the functional importance of the dual inhibition by UL36 for the HCMV life cycle. Together, our findings demonstrate a sophisticated mechanism by which HCMV tightly controls innate immune signaling and extrinsic apoptosis for efficient infection.


Subject(s)
Cytomegalovirus , Interferon Regulatory Factor-3 , Humans , Caspase 8 , Immune Evasion , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Signal Transduction
5.
Cell Rep ; 42(5): 112441, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37104090

ABSTRACT

RNA interference (RNAi) is a well-established antiviral immunity. However, for mammalian somatic cells, antiviral RNAi becomes evident only when viral suppressors of RNAi (VSRs) are disabled by mutations or VSR-targeting drugs, thereby limiting its scope as a mammalian immunity. We find that a wild-type alphavirus, Semliki Forest virus (SFV), triggers the Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs) in both mammalian somatic cells and adult mice. These SFV-vsiRNAs are located at a particular region within the 5' terminus of the SFV genome, Argonaute loaded, and active in conferring effective anti-SFV activity. Sindbis virus, another alphavirus, also induces vsiRNA production in mammalian somatic cells. Moreover, treatment with enoxacin, an RNAi enhancer, inhibits SFV replication dependent on RNAi response in vitro and in vivo and protects mice from SFV-induced neuropathogenesis and lethality. These findings show that alphaviruses trigger the production of active vsiRNA in mammalian somatic cells, highlighting the functional importance and therapeutic potential of antiviral RNAi in mammals.


Subject(s)
Alphavirus Infections , Antiviral Agents , Animals , Mice , RNA Interference , Cell Line , RNA, Small Interfering/genetics , Semliki forest virus/genetics , Sindbis Virus/genetics , Mammals/genetics , Virus Replication
6.
J Vis Exp ; (192)2023 02 17.
Article in English | MEDLINE | ID: mdl-36876947

ABSTRACT

A single high dose of streptozotocin injection followed by full-thickness skin excision on the dorsum of rats is a common method for constructing animal models of type 1 diabetic wounds. However, improper manipulation can lead to model instability and high mortality in rats. Unfortunately, there are few existing guidelines on type 1 diabetic wound modeling, and they lack detail and do not present specific reference strategies. Therefore, this protocol details the complete procedure for constructing a type 1 diabetic wound model and analyzes the progression and angiogenic characteristics of the diabetic wounds. Type 1 diabetic wound modeling involves the following steps: preparation of the streptozotocin injection, induction of type 1 diabetes mellitus, and construction of the wound model. The wound area was measured on day 7 and day 14 after wounding, and the skin tissues of the rats were extracted for histopathological and immunofluorescence analysis. The results revealed that type 1 diabetes mellitus induced by 55 mg/kg streptozotocin was associated with lower mortality and a high success rate. The blood glucose levels were relatively stable after 5 weeks of induction. The diabetic wound healing rate was significantly lower than that of normal wounds on day 7 and day 14 (p < 0.05), but both could reach more than 90% on day 14. Compared with the normal group, the epidermal layer closure of diabetic wounds on day 14 was incomplete and had delayed re-epithelialization and significantly lower angiogenesis (p < 0.01). The type 1 diabetic wound model constructed based on this protocol has the characteristics of chronic wound healing, including poor closure, delayed re-epithelialization, and decreased angiogenesis compared to normal rat wounds.


Subject(s)
Diabetes Mellitus, Type 1 , Wounds and Injuries , Animals , Rats , Epidermis , Models, Animal , Streptozocin
7.
ACS Appl Mater Interfaces ; 15(9): 11961-11969, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36826836

ABSTRACT

Sensitive and selective optoelectronic detection of NO2 with g-C3N4 (CN) is critical, but it remains challenging to achieve ultralow concentration (ppb-level) detection. Herein, Ni metal-organic frameworks/CN nanosheet heterojunctions were successfully fabricated by the electrostatic induced assembly strategy and then treated by a post-alkali etching process for creating coordinatively unsaturated Ni(II) sites. The optimized heterojunction exhibits a record detection limitation of 1 ppb for NO2, well below that observed on pristine CN, and an outstanding selectivity over other gases, along with long-time stability (120 days) at room temperature. The resulting superior detection performance benefits from the enhanced charge transfer and separation of the closely contacted heterojunction interface and the favorable adsorption of NO2 by unsaturated Ni(II) as selective adsorption sites mainly by means of the time-resolved photoluminescence spectra and in situ X-ray photoelectron spectra. Moreover, the in situ Fourier transform infrared spectra and temperature-programmed desorption disclose that the promotion adsorption of NO2 depends on the strengthened interaction between NO2 and Ni(II) node sites at the aid of OH groups from unsaturated coordination. This work offers a versatile solution to develop promising CN-based optoelectronic sensors at room temperature.

8.
mBio ; 14(1): e0237022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36507835

ABSTRACT

Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.


Subject(s)
Encephalitis, Viral , Ferroptosis , Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , Humans , Animals , Mice , Herpesvirus 1, Human/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , Proteasome Inhibitors , Cyclooxygenase 2/metabolism , Inflammation
9.
Article in English | MEDLINE | ID: mdl-35600943

ABSTRACT

Background: Immune cells are tightly bound up with the pathogenesis of asthma. Besides T cells, B cells, macrophages, and mast cells, the mechanism of innate lymphoid cells (ILCs) in asthma is gradually explicit. As a kind of traditional Chinese medicine, Majie cataplasm realizes its potential in the clinical setting as an adjuvant for asthma. In our previous experiments, Majie cataplasm inhibits the increasing Th1 and Th2 in allergic asthma inflammation and reshapes a balance between Th1 and Th2. As ILCs are the reflection of Th cells in lung tissues, we will figure out whether Majie cataplasm could have similar effects on ILCs or not. Methods: A total of 40 female C57/BL6 mice were randomly divided into the control group (n = 10), the asthma model group (n = 10), the dexamethasone group (n = 10), and the Majie cataplasm group (n = 10). Except for the control group, mice were sensitized with ovalbumin (OVA) and excited to establish mice models of asthma. Lung tissue and splenic tissue were collected at 24 h after the last challenge with OVA, and the cell suspension of the lungs and spleen was prepared. The number of ILC1s, ILC2s, ILC3s, and NKs cells in the lungs and Tregs and B10s in the spleen were detected by flow cytometry (FCM). This was followed by simultaneous quantitative detection of 40 inflammatory cytokines and chemokines in the lung by a protein microarray. Results: The dexamethasone and Majie cataplasm could restore the number of ILC1s, ILC2s, and ILC3s in lung tissue. Compared with the control group, these cells remained unchanged in the asthma model group, while ILC1s (P < 0.001, P < 0.01), ILC2s (P < 0.001, P < 0.01), and ILC3s (P < 0.01, P < 0.05) were restored after the intervention of dexamethasone and Majie cataplasm. The number of NKs was low among the control group, the asthma model group, and the dexamethasone group, while the number of NKs rocketed in the Majie cataplasm group (P < 0.0001). For splenic Tregs and B10s, Majie cataplasm could curb the increasing numbers of them in the asthma model group (P < 0.0001, P < 0.01), while only Tregs were suppressed by the dexamethasone (P < 0.0001). For the inflammatory cytokines in the lung, the contents of TNF-α, TNFR2, CXCL-9, CCL-12, CCL-9, CCL-2, and CCL-5 in the asthma model group were higher than those in the control group, while the contents of GM-CSF and IL-1α were decreased. Comparing the asthma model group to the dexamethasone group, the levels of G-CSF, CCL-9, CCL-5, and TNFR2 in the former group were higher. The levels of TNF-α, TNFR2, and CCL-9 in the asthma model group increase, while the levels of IFN-γ, IL-1α, ICAM-1, and IL-4 increased in the Majie cataplasm group, especially IFN-γ and IL-1α. Conclusion: Both the dexamethasone and Majie cataplasm could control the asthmatic inflammation by reducing the inflammatory factors, inhibiting the adaptive inflammation reaction in the latter stage of inflammation and furtherly reversing the inhibition of ILC2s, ILC2s, and ILC3s. In addition, Majie cataplasm can promote the quantity of NKs and the content of IL-1α and IFN-γ, induce IFN-γ +NKs to shut down the Th2 response, and tend to elicit the Th1 response.

10.
J Microencapsul ; 39(1): 25-36, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34859741

ABSTRACT

AIM: To prepare the hyaluronic acid-coated Olaparib-loaded PEI - PLGA nanoparticles (HA-Ola-PPNPs) and investigate their tumour-targeted anticancer effect. METHODS: The synthesis of HA-Ola-PPNPs was verified by DLS, TEM and SEM, followed was measured its cytotoxicity using CCK-8 assay. Confocal microscopy was used to observe the cellular uptake. Cell apoptosis was analysed by flow cytometry, biological SEM, and TEM. The expression of related proteins within the tumour site was investigated by immunostaining. RESULTS: The prepared HA-Ola-PPNPs showed a diameter of ∼160 nm with a negatively charged surface (-16.9 ± 2.7 mV) and sustained drug release behaviour. And the encapsulation efficiency of HA-Ola-PPNPs was 78.63 ± 5.29%. HA-Ola-PPNPs exhibited efficient in vitro and in vivo antitumor activities. HA-Ola-PPNPs induced cell apoptosis by upregulating Bax, Cytochrome C, and Caspase 3, downregulating Bcl-2 in breast cancer-bearing mice. CONCLUSIONS: According to the results, the Ola-loaded and HA-coated PEI - PLGA nanoparticles could be considered as a powerful tumour-targeted drug delivery system for TNBC treatment.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Drug Carriers/therapeutic use , Humans , Hyaluronic Acid , Mice , Phthalazines , Piperazines , Triple Negative Breast Neoplasms/drug therapy
11.
J Tradit Chin Med ; 40(3): 484-496, 2020 06.
Article in English | MEDLINE | ID: mdl-32506864

ABSTRACT

OBJECTIVE: To elucidate the mechanisms underlying the treatment of Alzheimer's disease (AD) with Traditional Chinese Medicine (TCM), by examining the active components, potential targets and synthetic pathways of Bulao Elixir (BLE). METHODS: The Absorption, Distribution, Metabolism, Excretion (ADME) / Toxicology (T) calculation was used to screen the active components of Bulao Elixir. Based on the TCM Systems Pharmacology Analysis Platform (TCMSP database) and a text mining tool (GoPubMed database), we predicted and screened the active components of Bulao Elixir and its therapeutic targets for AD. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID), we obtained the targets for AD. Cytoscape software was used to establish a network map of the active component-target and target-pathway of Bulao Elixir. Gene function, related biological processes and signaling pathways were analyzed using the DAVID database. RESULTS: Twelve active components were selected from 196 components of Bulao Elixir. Among 2209 targets, 102 effective targets were selected, and 30 important targets were identified via matching with the disease targets. After further analysis, 14 core targets were identified. Enrichment analysis revealed that most of these important targets were involved in multiple biological processes, including apoptosis, inflammatory reactions, and cell regulation cycles. The synthetic pathways for AD treatment were identified after analyzing and confirming the relevant pathways, providing potentially useful information for diagnosis and treatment methods for AD. CONCLUSION: The current study elucidated the potential treatment mechanisms of Bulao Elixir in AD using network pharmacology, providing a foundation for further clarification of its treatment targets.


Subject(s)
Alzheimer Disease/drug therapy , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Drugs, Chinese Herbal/chemical synthesis , Humans , Medicine, Chinese Traditional , Signal Transduction/drug effects
12.
Heliyon ; 6(5): e03896, 2020 May.
Article in English | MEDLINE | ID: mdl-32478182

ABSTRACT

Asthma poses a threat to human health, and its pathogenesis is closely related to the neuroimmune system. Majie cataplasm can not only regulate the immune system but also the nervous system in asthma patients for its components. We speculate that Majie cataplasm may relieve asthmatic patients with sensitivity to hormone or not by regulating the body's neuroimmune system. METHODS: In this experiment, a mouse model of asthma was well established by ovalbumin. The lung function of animals was examined and pathological changes in the lung tissue were assessed by hematoxylin-eosin staining. Serum immunoglobulin E (IgE), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA) were measured by ELISA. The location of CGRP, CD3 and neutrophil in lung tissue and their expressions were detected by immunofluorescence staining. In addition, contents of CGRP mRNA, Substance P (SP) mRNA, interleukin (IL)-17 mRNA and interleukin(IL)-13 mRNA were detected by quantitative polymerase chain reaction. RESULTS: Compared with the asthma model group, Majie cataplasm and dexamethasone can not only equivalently relieve airway hyperresponsiveness, but also make the content of serum IgE reduced. In addition, they can lower the content of serum CGRP and NKA after OVA stimulation, and this effect was more obvious for Majie cataplasm. Our results also showed that Majie Cataplasm and dexamethasone could inhibit the secretion of CGRP and the infiltration of T lymphocytes together with neutrophils in lung tissue and reduce expressions of CGRP mRNA, SP mRNA, IL-17 mRNA and IL-13 mRNA in lung tissue. CONCLUSION: Majie cataplasm effectively relieves expressions of neuropeptides such as CGRP, reduces the infiltration of immune cells in lung tissue, regulates the body's neuroimmune system, and has a therapeutic potential for both Th2 asthma and neutrophilic asthma.

13.
Chin Med ; 15: 53, 2020.
Article in English | MEDLINE | ID: mdl-32489402

ABSTRACT

BACKGROUND: Asthma, a common respiratory disease, is harmful biological effect to our health. As a traditional Chinese medicine for asthma, Majie cataplasm could alleviate the symptoms of asthma and its compositions have immunomodulatory effects. Previous experiments showed that Majie cataplasm was an effective approach to mitigate asthma airway remodeling and had the potential to regulate Th2 cytokines of IL-5 and IL-13. Therefore, our further research focuses on the explanation about the regulatory effect of Majie cataplasm on reshaping Th1/Th2 through their related transcription factors. METHODS: In this experiment, the launch of asthma model was made by inducing with Ovalbumin (OVA) in C57 mice (n = 40), including 4 groups: the untreated control group (n = 10), the asthma model group (n = 10), the dexamethasone group (n = 10) and the Majie cataplasm group (n = 10). After the intervention, all groups of animals got detected for serum IgE levels, and HE staining of lung tissues was to observe and examine pathological changes. Meanwhile, we analyzed the secretion of IL-4+ T cells and IFN-γ+ T cells in spleen by flow cytometry. The expressions of transcription factor STAT6 mRNA, GATA-3 mRNA and T-bet mRNA in lung tissues was tested by PCR, and western blot had been used to detect levels of JAK2 and STAT3. RESULTS: We found that Majie cataplasm eased the content of serum IgE and lung inflammation. It could lower the increased number of IL-4+ T cells and IFN-γ+ T cells (P < 0.0001, P < 0.01) in asthmatic mice and curb the expression of STAT6 mRNA and GATA-3 (P < 0.0001, P < 0.01) mRNA as well as the protein levels of JAK2 (P < 0.001) and the ratio of pSTAT3/STAT3 (P < 0.05). Besides, Majie cataplasm made its mark on T-bet mRNA by improving it (P < 0.0001). CONCLUSION: These data suggest that Majie cataplasm exert an anti-inflammatory effect of Th2 by rebalancing Th1/Th2 through corresponding transcription factor STAT6, GATA-3, STAT3, and T-bet, which providing a strong cornerstone for asthma control.

14.
Article in English | MEDLINE | ID: mdl-32419835

ABSTRACT

BACKGROUND: The incidence of type 2 diabetes mellitus (T2DM) has increased year by year, which not only seriously affects people's quality of life, but also imposes a heavy economic burden on the family, society, and country. Currently, the pathogenesis, diagnosis, and treatment of T2DM are still unclear. Therefore, exploration of a precise multitarget treatment strategy is urgent. Here, we attempt to screen out the active components, effective targets, and functional pathways of therapeutic drugs through network pharmacology with taking advantages of traditional Chinese medicine (TCM) formulas for multitarget holistic treatment of diseases to clarify the potential therapeutic mechanism of TCM formulas and provide a systematic and clear thought for T2DM treatment. METHODS: First, we screened the active components of Da-Chai-Hu Decoction (DCHD) by absorption, distribution, metabolism, excretion, and toxicity (ADME/T) calculation. Second, we predicted and screened the active components of DCHD and its therapeutic targets for T2DM relying on the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP database) and Text Mining Tool (GoPubMed database), while using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to obtain T2DM targets. Third, we constructed a network of the active component-target, target-pathway of DCHD using Cytoscape software (http://cytoscape.org/,ver.3.5.1) and then analyzed gene function, related biological processes, and signal pathways through the DAVID database. RESULTS: We screened 77 active components from 1278 DCHD components and 116 effective targets from 253 ones. After matching the targets of T2DM, we obtained 38 important targets and 7 core targets were selected through further analysis. Through enrichment analysis, we found that these important targets were mainly involved in many biological processes such as oxidative stress, inflammatory reaction, and apoptosis. After analyzing the relevant pathways, the synthetic pathway for the treatment of T2DM was obtained, which provided a diagnosis-treatment idea for DCHD in the treatment of T2DM. CONCLUSIONS: This article reveals the mechanism of DCHD in the treatment of T2DM related to inflammatory response and apoptosis through network pharmacology, which lays a foundation for further elucidation of drugs effective targets.

15.
Oncol Lett ; 17(2): 2099-2106, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30675277

ABSTRACT

Cervical cancer is one of the most prevalent female cancer types in developing countries. ThinPrep cytological test (TCT) and human papillomavirus (HPV) detection are canonical screening methods for cervical cancer currently. However, there are limitations to these techniques. The aim of the present study was to identify efficient and practical methods for the screening of cervical intraepithelial neoplasia (CIN) and carcinoma. Residual PreservCyt specimens were obtained from 1,000 women who were admitted between August 2013 and December 2015. TCT, human telomerase RNA component (h-TERC) fluorescent in situ hybridization (FISH), MYC-specific FISH and surface plasmon resonance (SPR)-HPV genotyping were performed, followed by histopathology for those patients with positive results in any of the four tests. As a result, 106, 64, 56 and 112 patients were positive in the TCT, h-TERC, c-MYC and SPR-HPV tests, respectively, resulting in 213 being scheduled for histopathology; inflammation was identified in 159 patients, CIN I in 31, CIN II in 14, CIN III in seven and invasive cervical cancer in two patients. Using histopathology as the gold standard, TCT exhibited the highest sensitivity (87.04%), while h-TERC analysis had the highest specificity (81.76%). Parallel tests demonstrated that the Youden's index of TCT + h-TERC was the highest (0.49), while the serial analysis reported that TCT + HPV had the highest Youden's index (0.53) compared with any of the biomarkers alone (TCT, 0.50; HPV, 0.29; h-TERC, 0.47). In conclusion, dual positive TCT and HPV may be an efficient approach for basic screening of cervical lesions. h-TERC amplification may serve as an auxiliary test to improve the specificity.

16.
Int J Clin Exp Pathol ; 10(7): 7534-7541, 2017.
Article in English | MEDLINE | ID: mdl-31966597

ABSTRACT

BACKGROUND: Abdominal wall endometriosis has been well-described and can occur after caesarean section. However, malignant transformation of abdominal wall endometriosis is rare, less than 40 cases have been reported so far and its pathogenesis is still poorly understood. CASE REPORT: Here, we report a 48-year-old woman, gravida 1, para 1, with a history of uneventful caesarean delivery presented with increasing pain and a rapid growing mass in her cesarean section scar. Serum tumor markers, especially CA125 and CA199 increased remarkably. Physical examination and pelvic magnetic resonance imaging showed a mass sized 15 cm in maximum diameter and the enlarged pelvic lymph nodes. Neoadjuvant chemotherapy and surgery were performed, followed by chemotherapy. The surgery contained radical resection, excision of bilateral accessory, hysterectomy, omentectomy, lymph node excision and abdominal dermoplasty. Histopathological examination showed a serous adenocarcinoma of endometrial origin with lymph node metastasis. Recurrence was noted 3 months after surgery and the patient was followed up until now. 33 literatures on similar cases were reviewed. CONCLUSION: Extensive lymph nodes metastasis might predict a poor prognosis in case of malignant transformation of abdominal wall endometriosis. Radical resection followed by chemotherapy is the most common treatment. Once recurrence occurs, treatments including chemotherapy and radiotherapy are usually ineffective.

17.
Article in English | MEDLINE | ID: mdl-29333181

ABSTRACT

Dendritic cells (DCs) can secrete cytokines stimulated by lipopolysaccharide (LPS), which leads to not just acute inflammatory responses but also Th1 polarization. Furtherly, chronic inflammation or autoimmune diseases could be triggered. As a classic Traditional Chinese Medicine formula, Ephedra Aconite Asarum Decoction with the main ingredients of ephedrine and hypaconitine can show effect on anti-inflammation and immunoregulation. But it remains unclear whether Ephedra Aconite Asarum Decoction controls DCs. In this study, we investigated the effects of Ephedra Aconite Asarum Decoction on LPS-induced bone marrow-derived DCs (BMDCs) in vitro. We found that Ephedra Aconite Asarum Decoction lowered surface costimulators on DCs and reduced the expression of Th1 type cytokines. Yet it is slightly beneficial for shifting to Th2. Our work reveals that the Ephedra Aconite Asarum Decoction can regulate Th1 inflammation through intervening DCs.

18.
Arch Gynecol Obstet ; 293(5): 1043-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26525692

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of uterine artery chemoembolization (UAE) combined with intra-arterial MTX infusion for the treatment of cervical pregnancy. METHODS: Retrospective chart review for 26 cervical pregnancy patients treated at Renji hospital between January 2000 and December 2012. 14 patients received UAE combined with intra-arterial MTX infusion (UAE group) and 12 patients received single intramuscular MTX injection combined with subsequent uterine curettage (non-UAE group). RESULTS: All 14 patients in the UAE group were treated successfully and 1 patient in the non-UAE group had 1200 ml vaginal bleeding during uterine curettage and was then treated with emergency UAE. The mean estimated blood loss during uterine curettage in the UAE group was much less than in non-UAE Group. A quicker regression of serum ß-hCG level and normal menses resumed and a shorter hospital stay were observed in the UAE group than in the non-UAE group. CONCLUSIONS: Uterine artery chemoembolization combined with intra-arterial MTX infusion is an efficient conservative treatment for cervical pregnancy.


Subject(s)
Chemoembolization, Therapeutic , Methotrexate/administration & dosage , Pregnancy, Ectopic/surgery , Uterine Artery Embolization , Adult , Cesarean Section/adverse effects , Combined Modality Therapy , Dilatation and Curettage , Female , Follow-Up Studies , Humans , Infusions, Intra-Arterial , Injections, Intramuscular , Methotrexate/therapeutic use , Pregnancy , Retrospective Studies , Treatment Outcome , Uterine Hemorrhage/etiology , Young Adult
20.
Biomed Tech (Berl) ; 55(5): 265-71, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20840008

ABSTRACT

The plantar fascia (PF) and major ligaments play important roles in keeping the static foot arch structure. Their functions and relative contributions to the arch stability have not been well studied. A three-dimensional finite element foot model was created based on the reconstruction of magnetic resonance images. During balanced standing, four cases after individual releases of the PF, spring ligament (SL), and long and short plantar ligaments (LPL and SPL) were simulated, to compare their biomechanical consequences with the normal predictions under the intact structure. Although the predictions showed the arch did not collapse obviously after each structure sectioning, the internal mechanical behaviors changed considerably. The PF release resulted in the maximal increases of approximately 91%, 65% and 47% in the tensions of the LPF, SPL and SL, produced the largest changes in all bone rotations, and brought an obvious shift of high stress from the medial metatarsals to the lateral metatarsals. The SL release mainly enhanced bone rotation angles and weakened the joint stability of the arch structure. The LPL and the SPL performed the roles of mutual compensation as either one was released. The influence of the LPL on the load distribution among metatarsals was greater than for the SPL and the SL.


Subject(s)
Fascia/physiology , Foot/physiology , Ligaments/physiology , Models, Biological , Posture/physiology , Computer Simulation , Elastic Modulus/physiology , Fascia/anatomy & histology , Finite Element Analysis , Humans , Ligaments/anatomy & histology , Models, Anatomic , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...