Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Emerg Microbes Infect ; : 2372364, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923510

ABSTRACT

Salmonellosis is one of the most common causes of diarrhea, affecting 1/10 of the global population. Salmonellosis outbreaks (SO) pose a severe threat to the healthcare systems of developing regions. To elucidate the patterns of SO in China, we conducted a systematic review and meta-analysis encompassing 1,134 reports across 74 years, involving 89,050 patients and 270 deaths. A rising trend of SO reports has been observed since the 1970s, with most outbreaks occurring east of the Hu line, especially in coastal and populated regions. It is estimated to have an overall attack rate of 36.66% (95% CI, 33.88-39.45%), and antimicrobial resistance towards quinolone (49.51%) and beta-lactam (73.76%) remains high. Furthermore, we developed an online website, the Chinese Salmonellosis Outbreak Database (CSOD), for visual presentation and data-sharing purposes. This study indicated that healthcare-associated SO required further attention, and our study served as a foundational step in pursuing outbreak intervention and prediction.

2.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790187

ABSTRACT

The systematic revision of the family Peristediidae remains an unresolved issue due to their diverse and unique morphology. Despite the popularity of using mitochondrial genome research to comprehensively understand phylogenetic relationships in fish, genetic data for peristediid fish need to be included. Therefore, this study aims to investigate the mitochondrial genomic characteristics and intra-family phylogenetic relationships of Peristediidae by utilizing mitochondrial genome analysis. Therefore, this study aims to investigate the phylogenetic relationship of Peristediidae by utilizing mitochondrial genome analysis. The mitochondrial genome of four species of Peristediidae (Peristedion liorhynchus, Satyrichthys welchi, Satyrichthys rieffeli, and Scalicus amiscus) collected in the East China Sea was studied. The mitochondrial gene sequence lengths of four fish species were 16,533 bp, 16,526 bp, 16,527 bp, and 16,526 bp, respectively. They had the same mitochondrial structure and were all composed of 37 genes and one control region. Most PCGs used ATG as the start codon, and a few used GTG as the start codon. An incomplete stop codon (TA/T) occurred. The AT-skew and GC-skew values of 13 PCGs from four species were negative, and the GC-skew amplitude was greater than that of AT-skew. All cases of D-arm were found in tRNA-Ser (GCT). The Ka/Ks ratio analysis indicated that 13 PCGs were suffering purifying selection. Based on 12 PCGs (excluding ND6) sequences, a phylogenetic tree was constructed using Bayesian inference (BI) and maximum likelihood (ML) methods, providing a further supplement to the scientific classification of Peristediidae fish. According to the results of divergence time, the four species of fish had apparent divergence in the Early Cenozoic, which indicates that the geological events at that time caused the climax of species divergence and evolution.


Subject(s)
Genome, Mitochondrial , Phylogeny , Animals , Genome, Mitochondrial/genetics , Fishes/genetics , Fishes/classification , RNA, Transfer/genetics , Evolution, Molecular
3.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674158

ABSTRACT

With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Sea Cucumbers , Seasons , Animals , Gastrointestinal Microbiome/genetics , Bacteria/classification , Bacteria/genetics , Sea Cucumbers/microbiology , Sea Cucumbers/genetics , Aquaculture , High-Throughput Nucleotide Sequencing , Phylogeny , Holothuria/microbiology , Holothuria/genetics , Stichopus/microbiology , Stichopus/genetics , RNA, Ribosomal, 16S/genetics
4.
Sci Data ; 11(1): 244, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413596

ABSTRACT

Infectious disease outbreaks transcend the medical and public health realms, triggering widespread panic and impeding socio-economic development. Considering that self-limiting diarrhoea of sporadic cases is usually underreported, the Salmonella outbreak (SO) study offers a unique opportunity for source tracing, spatiotemporal correlation, and outbreak prediction. To summarize the pattern of SO and estimate observational epidemiological indicators, 1,134 qualitative reports screened from 1949 to 2023 were included in the systematic review dataset, which contained a 506-study meta-analysis dataset. In addition to the dataset comprising over 50 columns with a total of 46,494 entries eligible for inclusion in systematic reviews or input into prediction models, we also provide initial literature collection datasets and datasets containing socio-economic and climate information for relevant regions. This study has a broad impact on advancing knowledge regarding epidemic trends and prevention priorities in diverse salmonellosis outbreaks and guiding rational policy-making or predictive modeling to mitigate the infringement upon the right to life imposed by significant epidemics.


Subject(s)
Disease Outbreaks , Salmonella Food Poisoning , Salmonella Infections , Humans , China/epidemiology , Data Collection , Salmonella , Salmonella Food Poisoning/epidemiology , Salmonella Infections/epidemiology , Systematic Reviews as Topic , Meta-Analysis as Topic
5.
Microb Biotechnol ; 17(2): e14417, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380960

ABSTRACT

Typhoid fever is caused by Salmonella enterica serotype Typhi (Salmonella Typhi). Syndromes in patients vary from asymptomatic carriers to severe or death outcomes, which are frequently reported in African and Southeast Asian countries. It is one of the most common waterborne transmission agents, whose transmission is likely impacted by climate change. Here, we claimed the evidence and consequences of climate-related foodborne and waterborne diseases have increased and provided possible mitigations against Typhoidal Salmonella dissemination.


Subject(s)
Typhoid Fever , Humans , Climate Change , Salmonella typhi , Salmonella
6.
Comput Struct Biotechnol J ; 23: 559-565, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38274998

ABSTRACT

Escherichia coli (E. coli) has become a particular concern due to the increasing incidence of antimicrobial resistance (AMR) observed worldwide. Using machine learning (ML) to predict E. coli AMR is a more efficient method than traditional laboratory testing. However, further improvement in the predictive performance of existing models remains challenging. In this study, we collected 1937 high-quality whole genome sequencing (WGS) data from public databases with an antimicrobial resistance phenotype and modified the existing workflow by adding an attention mechanism to enable the modified workflow to focus more on core single nucleotide polymorphisms (SNPs) that may significantly lead to the development of AMR in E. coli. While comparing the model performance before and after adding the attention mechanism, we also performed a cross-comparison among the published models using random forest (RF), support vector machine (SVM), logistic regression (LR), and convolutional neural network (CNN). Our study demonstrates that the discriminative positional colors of Chaos Game Representation (CGR) images can selectively influence and highlight genome regions without prior knowledge, enhancing prediction accuracy. Furthermore, we developed an online tool (https://github.com/tjiaa/E.coli-ML/tree/main) for assisting clinicians in the rapid prediction of the AMR phenotype of E. coli and accelerating clinical decision-making.

7.
Natl Sci Rev ; 10(10): nwad228, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37965675

ABSTRACT

Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.

8.
mSystems ; 8(6): e0088323, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37855620

ABSTRACT

IMPORTANCE: Antimicrobial resistance (AMR) has become a significant global challenge, with an estimated 10 million deaths annually by 2050. The emergence of AMR is mainly attributed to mobile genetic elements (MGEs or mobilomes), which accelerate wide dissemination among pathogens. The interaction between mobilomes and AMR genes (or resistomes) in Salmonella, a primary cause of diarrheal diseases that results in over 90 million cases annually, remains poorly understood. The available fragmented or incomplete genomes remain a significant limitation in investigating the relationship between AMR and MGEs. Here, we collected the most extensive closed Salmonella genomes (n = 1,817) from various sources across 58 countries. Notably, our results demonstrate that resistome transmission between Salmonella lineages follows a specific pattern of MGEs and is influenced by external drivers, including certain socioeconomic factors. Therefore, targeted interventions are urgently needed to mitigate the catastrophic consequences of Salmonella AMR.


Subject(s)
Drug Resistance, Bacterial , Salmonella , Salmonella/drug effects , Salmonella/genetics
9.
Angew Chem Int Ed Engl ; 62(38): e202308775, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37526944

ABSTRACT

The complexes of metal center and nitrogen ligands are the most representative systems for catalyzing hydrogenation reactions in small molecule conversion. Developing heterogeneous catalysts with similar active metal-nitrogen functional centers, nevertheless, still remains challenging. In this work, we demonstrate that the metal-nitrogen coupling in anti-perovskite Co4 N can be effective modulated by Cu doping to form Co3 CuN, leading to strongly promoted hydrogenation process during electrochemical reduction of nitrate (NO3 - RR) to ammonia. The combination of advanced spectroscopic techniques and density functional theory calculations reveal that Cu dopants strengthen the Co-N bond and upshifted the metal d-band towards the Fermi level, promoting the adsorption of NO3 - and *H and facilitating the transition from *NO2 /*NO to *NO2 H/*NOH. Consequently, the Co3 CuN delivers noticeably better NO3 - RR activity than the pristine Co4 N, with optimal Faradaic efficiency of 97 % and ammonia yield of 455.3 mmol h-1 cm-2 at -0.3 V vs. RHE. This work provides an effective strategy for developing high-performance heterogeneous catalyst for electrochemical synthesis.

10.
Microbiol Spectr ; : e0211322, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36840575

ABSTRACT

Antimicrobial resistance poses a challenge to global public health, and companion animals could serve as the reservoir for antimicrobial-resistant bacteria. However, the prevalence of antimicrobial-resistant bacteria, especially multidrug-resistant (MDR) bacteria, and the associated risk factors from companion animals are partially understood. Here, we aim to investigate the prevalence of MDR Escherichia coli, as an indicator bacterium, in pet cats and dogs in Hangzhou, China, and evaluate the factors affecting the prevalence of MDR E. coli. The proportion of pets carrying MDR E. coli was 35.77% (49/137), i.e., 40.96% (34/83) for dogs and 27.28% (15/54) for cats. Isolates resistant to trimethoprim-sulfamethoxazole (49.40% and 44.44%), amoxicillin-clavulanic acid (42.17% and 38.89%), and nalidixic acid (40.96% and 35.19%) were the most prevalent in dogs and cats. Interestingly, comparable prevalence of MDR E. coli was observed in pet dogs and cats regardless of the health condition and the history of antibiotic use. Genetic diversity analysis indicates a total of 86 sequencing types (23 clonal complexes), with ST12 being the most dominant. Further genomic investigation of a carbapenem-resistant E. coli ST410 isolate reveals abundant antimicrobial-resistance genes and a plasmid-borne carbapenemase gene (NDM-5) flanked by insertion sequences of IS91 and IS31, suggesting the plasmid and insertion sequences may be involved in carbapenem-resistance dissemination. These data show that companion animal-derived MDR bacteria could threaten public health, and further regulation and supervision of antimicrobial use in pet clinics should be established in China. IMPORTANCE MDR Escherichia coli are considered a global threat because of the decreasing options for antimicrobial therapy. Companion animals could be a reservoir of MDR E. coli, and the numbers of pets and households owning pets in China are booming. However, the prevalence and risk factors of MDR E. coli carriage in Chinese pets were rarely studied. Here, we investigated the prevalence of MDR E. coli in pets in Hangzhou, one of the leading cities with the most established pet market in China, and explored the factors that affected the prevalence. Our findings showed high prevalences of MDR E. coli in pet dogs and cats regardless of their health condition and the history of antibiotic use, suggesting their potential role of public health risk. A call-to-action for improved regulation of antimicrobial use in companion animal is needed in China.

11.
Int J Food Microbiol ; 389: 110105, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36731202

ABSTRACT

Enterococcus has been considered one of the most important nosocomial pathogens for human infections, and the hospital environment is an important reservoir for vancomycin-resistant enterococci (VRE) that leads to antimicrobial therapeutic failure. However, infant foods and their production environments could pose risks for the immature population, while this question remains unaddressed. This study conducted an extensive and thorough Enterococcus isolation, VRE risk assessment of the Chinese infant food production chains and additional online-marketing infant foods, including powdered infant formula (PIF) and infant complementary food (ICF). To investigate the prevalence of Enterococcus along infant food chains and commodities, a total of 482 strains of Enterococcus, including E. faecium (n = 363), E. faecalis (n = 84), E. casseliflavus (n = 13), E. mundtii (n = 12), E. gallinarum (n = 4), E. hirae (n = 4), and E. durans (n = 2) were recovered from 459 samples collected from infant food production chains (71/254) and food commodities (67/205). A decreasing trend for Enterococcus detection rate was found in the PIF production chain (PIF-PC), particularly during the preparation of the PIF base powder (From 100 % in raw milk to 8.70 % in end products), while an increasing trend was observed in the ICF production chain (ICF-PC) mainly during the initial processing of farm crops and the further processing of the product (20 % at farm crops increasing to 76.92 % at end products). The result indicated that the PIF-PC process effectively reduced Enterococcus contamination, while the ICF-PC showed the opposite trend. Importantly, eleven VRE isolates were recovered from the infant food production chain, including seven E. casseliflavus isolates carrying vanC2/C3 and four E. gallinarum isolates carrying vanC1. Ten VRE isolates were from food production environments. Collectively, our study demonstrated that infant food production environments represent potential reservoirs for VRE non-nosocomial infections in vulnerable populations.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin , Vancomycin Resistance , Anti-Bacterial Agents/pharmacology , Infant Formula , Gram-Positive Bacterial Infections/epidemiology , Microbial Sensitivity Tests
12.
Microbiol Spectr ; 10(5): e0247922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36194132

ABSTRACT

High-resolution and efficient typing for the bacterial pathogen is essential for tracking the sources, detecting or diagnosing variants, and conducting a risk assessment. However, a systematic in-field investigation of Salmonella along the food chain has not been documented. This study assessed 12 typing methods, such as antimicrobial-resistance (AMR) gene profile typing, Core Genome Multilocus Sequence Typing (cgMLST), and CRISPR multi-virulence locus sequence typing (CRISPR-MVLST), to evaluate their effectiveness for use in routine monitoring of foodborne Salmonella transmission along the poultry production chain. During 2015-16, a total of 1,064 samples were collected from poultry production chain, starting from breeding farms and slaughterhouses to the markets of Zhejiang province in China. A total of 61 consecutive unique Salmonella isolates recovered from these samples were selected for genome sequencing and further comparative typing analysis. Traditional typing methods, including serotyping, AMR phenotype-based typing, as well as modern genotyping approaches, were evaluated and compared by their discrimination index (DI). The results showed that the serotyping method identified nine serovars. The gold standard cgMLST method indicated only 18 different types (DI = 0.8541), while the CRISPR-MVLST method detected 30 types (DI = 0.9628), with a higher DI than all examined medium-resolution WGS-based genotyping methods. We demonstrate that the CRISPR-MVLST might be used as a tool with high discriminatory power, comparable ease of use, ability of tracking the source of Salmonella strains along the food chain and indication of genetic features especially virulence genes. The available methods with different purposes and laboratory expertise were also illustrated to assist in rational implementation. IMPORTANCE In public health field, high-resolution and efficient typing of the bacterial pathogen is essential, considering source-tracking and risk assessment are fundamental issues. Currently, there are no recommendations for applying molecular characterization methods for Salmonella along the food chain, and a systematic in-field investigation comparing subtyping methods in the context of routine surveillance was partially addressed. Using 1,064 samples along a poultry production chain with a considerable level of Salmonella contamination, we collected representative isolates for genome sequencing and comparative analysis by using 12 typing techniques, particularly with whole-genome sequence (WGS) based methods and a recently invented CRISPR multi-virulence locus sequence typing (CRISPR-MVLST) method. CRISPR-MVLST is identified as a tool with higher discriminatory power compared with medium-resolution WGS-based typing methods, comparable ease of use and proven ability of tracking Salmonella isolates. Besides, we also offer recommendations for rational choice of subtyping methods to assist in better implementation schemes.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Salmonella , Salmonella/genetics , Multilocus Sequence Typing/methods , Serogroup , Sequence Analysis, DNA
13.
EMBO Mol Med ; 14(11): e16366, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36172999

ABSTRACT

Invasive nontyphoidal Salmonella (iNTS) causes extraintestinal infections with ~15% case fatality in many countries. However, the mechanism by which iNTS emerged in China remains unaddressed. We conducted clinical investigations of iNTS infection with recurrent treatment failure, caused by underreported Salmonella enterica serovar Livingstone (SL). Genomic epidemiology demonstrated five clades in the SL population and suggested that the international animal feed trade was a likely vehicle for their introduction into China, as evidenced by multiple independent transmission incidents. Importantly, isolates from Clade-5-I-a/b, predominant in China, showed an invasive nature in mice, chicken and zebrafish infection models. The antimicrobial susceptibility testing revealed most isolates (> 96%) in China are multidrug-resistant (MDR). Overall, we offer exploiting genomics in uncovering international transmission led by the animal feed trade and highlight an emerging hypervirulent clade with increased resistance to frontline antibiotics.


Subject(s)
Domestication , Salmonella Infections , Animals , Mice , Serogroup , Zebrafish , Salmonella Infections/epidemiology , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
14.
Animals (Basel) ; 12(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36078023

ABSTRACT

In this study, the eukaryotic composition of gut contents in three tropical sea cucumber species, Stichopus monotuberculatus, S. chloronotus and Holothuria atra were surveyed and compared by metabarcoding analysis based on 18S rRNA gene V4 region. The sequences were assigned to 21.80 ± 1.07, 22.60 ± 0.68 and 22.40 ± 0.25 different phyla from the gut contents of S. monotuberculatus, S. chloronotus and H. atra, respectively, and those in sediment samples were assigned to 21.00 ± 1.67 phyla. The results of α-diversity showed that surface sediments had a greater eukaryotic diversity than gut contents, yet the guts of sea cucumbers had an enrichment effect on some microorganisms, including Diatomea and Apicomplex. A comparison of the gut eukaryotic community among the three species suggested that the feeding preference was different: S. monotuberculatus fed mainly on Diatomea and Arthropoda, and the other two species had higher Apicomplexa concentrations, which may be due to differences in the morphology of the tentacles and habitat preferences. Moreover, obvious different eukaryotic community composition in the gut contents of the three sea cucumber species and the surrounding sediments also might result from the animals' selective feeding for sediment patches. The current study filled in gaps about feeding mechanisms of tropical sea cucumbers and provided a basis for further exploring the mechanism about selective feeding and sea cucumber-sediment interaction in the future.

15.
J Hazard Mater ; 438: 129476, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35809365

ABSTRACT

To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Salmonella , Animal Feed/analysis , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Farms , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/physiology , Serogroup , Stress, Physiological
16.
Microbiol Spectr ; 10(4): e0096522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35727054

ABSTRACT

Paratyphoid avian salmonellosis is considered one of the leading causes of poultry death, resulting in significant economic losses to poultry industries worldwide. In China, especially in Shandong province, the leading producer of poultry products, several recurrent outbreaks of avian salmonellosis have been reported during the last decade where the precise causal agent remains unknown. Moreover, the establishment of earlier and more accurate recognition of pathogens is a key factor to prevent the further dissemination of resistant and/or hypervirulent clones. Here, we aim to use whole-genome sequencing combined with in silico toolkits to provide the genomic features of the antimicrobial resistance and virulence potential of 105 regionally representative non-Pullorum/Gallinarum Salmonella isolates recovered from dead poultry between 2008 and 2019 in Shandong, China. Additionally, phenotypic susceptibility to a panel of 15 antibiotics representing 11 classes was assessed by the broth microdilution method. In this study, we identified eight serovars and nine multilocus sequence typing (MLST) types, with Salmonella enterica serovar Enteritidis sequence type 11 (ST11) being the most prevalent (84/105; 80%). Based on their phenotypic antimicrobial resistance, 77.14% of the isolates were defined as multidrug resistant (≥3 antimicrobial classes), with the detection of one S. Enteritidis isolate that was resistant to the 11 classes. The highest rates of resistance were observed against nalidixic acid (97.14%) and ciprofloxacin (91.43%), followed by ampicillin (71.43%), streptomycin (64.77%), and tetracycline (60%). Genomic characterization revealed the presence of 41 resistance genes, with an alarmingly high prevalence of blaTEM-1B (60%), in addition to genomic mutations affecting the DNA gyrase (gyrA) and DNA topoisomerase IV (parC) genes, conferring resistance to quinolones. The prediction of plasmid replicons detected 14 types, with a dominance of IncFIB(S)_1 and IncFII(S)_1 (87.62% for both), while the IncX1 plasmid type was considered the key carrier of antimicrobial resistance determinants. Moreover, we report the detection of critical virulence genes, including cdtB, rck, sodCI, pef, and spv, in addition to the typical determinants for Salmonella pathogenicity island 1 (SPI-1) and SPI-2. Furthermore, phylogenomic analysis revealed the detection of three intra-farm and five inter-farm transmission events. Overall, the detection of Salmonella isolates presenting high antimicrobial resistance and harboring different critical virulence genes is of major concern, which requires the urgent implementation of effective strategies to mitigate non-Pullorum/Gallinarum avian salmonellosis. IMPORTANCE Avian salmonellosis is one of the leading global causes of poultry death, resulting in substantial economic losses in China (constituting 9% of overall financial losses). In Shandong province, a top poultry producer (30% of the overall production in China, with 15% being exported to the world), extensive outbreaks of avian salmonellosis have been reported in the past decade where the causal agents or exact types remain rarely addressed. From approximately 2008 to 2019, over 2,000 Salmonella strains were isolated and identified from dead poultry during routine surveillance of 95 poultry farms covering all 17 cities in Shandong. Approximately 1,500 isolates were confirmed to be of non-Pullorum/Gallinarum Salmonella serovars. There is an urgent need to understand the mechanisms behind the implication of zoonotic Salmonella serovars in systemic infections of poultry. Here, we analyzed populations of clinically relevant isolates of non-Pullorum/Gallinarum Salmonella causing chicken death in China by a whole-genome sequencing approach and determined that antimicrobial-resistant Salmonella Enteritidis remained the major cause in the past decades.


Subject(s)
Poultry Diseases , Salmonella Food Poisoning , Salmonella Infections, Animal , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/genetics , Multilocus Sequence Typing , Poultry , Poultry Diseases/epidemiology , Salmonella , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Salmonella enteritidis , Serogroup , Virulence/genetics
17.
Antibiotics (Basel) ; 11(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35625269

ABSTRACT

Salmonella is a group of bacteria that constitutes the leading cause of diarrheal diseases, posing a great disease burden worldwide. There are numerous pathways for zoonotic Salmonella transmission to humans; however, the role of companion animals in spreading these bacteria is largely underestimated in China. We aimed to investigate the prevalence of Salmonella in pet dogs and cats in Hangzhou, China, and characterize the antimicrobial resistance profile and genetic features of these pet-derived pathogens. In total, 137 fecal samples of pets were collected from an animal hospital in Hangzhou in 2018. The prevalence of Salmonella was 5.8% (8/137) in pets, with 9.3% (5/54) of cats and 3.6% (3/83) of dogs being Salmonella positive. By whole-genome sequencing (WGS), in silico serotyping, and multilocus sequence typing (MLST), 26 pet-derived Salmonella isolates were identified as Salmonella Dublin (ST10, n = 22) and Salmonella Typhimurium (ST19, n = 4). All of the isolates were identified as being multidrug-resistant (MDR), by conducting antimicrobial susceptibility testing under both aerobic and anaerobic conditions. The antibiotics of the most prevalent resistance were streptomycin (100%), cotrimoxazole (100%), tetracycline (96.20%), and ceftriaxone (92.30%). Versatile antimicrobial-resistant genes were identified, including floR (phenicol-resistant gene), blaCTX-M-15, and blaCTX-M-55 (extended-spectrum beta-lactamase genes). A total of 11 incompatible (Inc) plasmids were identified, with IncA/C2, IncFII(S), and IncX1 being the most predominant among Salmonella Dublin, and IncFIB(S), IncFII(S), IncI1, and IncQ1 being the most prevailing among Salmonella Typhimurium. Our study applied WGS to characterize pet-derived Salmonella in China, showing the presence of MDR Salmonella in pet dogs and cats with a high diversity of ARGs and plasmids. These data indicate a necessity for the regular surveillance of pet-derived pathogens to mitigate zoonotic diseases.

18.
Biosens Bioelectron ; 202: 114004, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35078140

ABSTRACT

Structures with dense nanopores are desirable as surface-enhanced Raman scattering (SERS) sensing substrates because the nanopores can behave as both analyte containers and SERS-active sites (known as hot spots). Inspired by the dealloying process to prepare nanoporous structures through selectively removing active metals from their alloy, we developed a method to prepare nanoporous Ag nanorods through chemical reduction of the electrodeposited Ag7O8NO3 nanorods using a strong reducing agent (e.g., NaBH4). The length and the thickness of the Ag7O8NO3 nanorods could be controlled by the electrodeposition voltage and time. Nitrogen and oxygen elements were immediately removed from Ag7O8NO3 nanorods by the reducing agent, leaving behind a tremendous number of nanopores with a mean size of 20 nm, which can efficiently trap and enrich analytes. Meanwhile, the densely packed nanopores can behave as SERS hot spots to provide strong SERS enhancement. The nanoporous Ag nanorods as SERS substrates were used to sensitively detect adenine, spike glycoprotein, and polychlorinated biphenyls pollutants, as well as identify different types of bacteria. The simple fabrication process and the outstanding SERS performance of the nanoporous Ag nanorods make them promising candidates for SERS applications towards trace detection of pollutants, narcotics, food additives, and biomolecules.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanopores , Nanotubes , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods
19.
Curr Issues Mol Biol ; 43(3): 2048-2058, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34889891

ABSTRACT

Sebastiscus species, marine rockfishes, are of essential economic value. However, the genomic data of this genus is lacking and incomplete. Here, whole genome sequencing of all species of Sebastiscus was conducted to provide fundamental genomic information. The genome sizes were estimated to be 802.49 Mb (S. albofasciatus), 786.79 Mb (S. tertius), and 776.00 Mb (S. marmoratus) by using k-mer analyses. The draft genome sequences were initially assembled, and genome-wide microsatellite motifs were identified. The heterozygosity, repeat ratios, and numbers of microsatellite motifs all suggested possibly that S. tertius is more closely related to S. albofasciatus than S. marmoratus at the genetic level. Moreover, the complete mitochondrial genome sequences were assembled from the whole genome data and the phylogenetic analyses genetically supported the validation of Sebastiscus species. This study provides an important genome resource for further studies of Sebastiscus species.


Subject(s)
Genome , Genomics , Perciformes/genetics , Sequence Analysis, DNA , Whole Genome Sequencing , Animals , Computational Biology/methods , Genomics/methods , Microsatellite Repeats , Perciformes/classification , Phylogeny
20.
Front Oncol ; 11: 747532, 2021.
Article in English | MEDLINE | ID: mdl-34631584

ABSTRACT

PURPOSE: To investigate the potential clinical benefits of using stereotactic body radiation therapy (SBRT) with simultaneous integrated boost (SIB) technique for locally advanced pancreatic cancer (LAPC) among different treatment modalities and planning strategies, including photon and proton. METHOD: A total of 19 patients were retrospectively selected in this study: 13 cases with the tumor located in the head of the pancreas and 6 cases with the tumor in the body of the pancreas. SBRT-SIB plans were generated using volumetric modulated arc therapy (VMAT), two-field Intensity Modulated Proton Therapy (IMPT), and three-field IMPT. The IMPT used the robust optimization parameters of ± 3.5% range and 5-mm setup uncertainties. Root-mean-square deviation dose (RMSD) volume histograms were used to evaluate the target coverage robustness quantitatively. Dosimetric metrics based on the dose-volume histogram (DVH), homogeneity index (HI), and normal tissue complication probability (NTCP) were analyzed to evaluate the potential clinical benefits among different planning groups. RESULTS: With a similar CTV and SIB coverage, two-field IMPT provided a lower maximum dose for the stomach (median: 18.6GyE, p<0.05) and duodenum (median: 32.62GyE, p<0.05) when the target was located in the head of the pancreas compared to VMAT and three-field IMPT. The risks of gastric bleed (3.42%) and grade ≥ 3 GI toxicity (4.55%) were also decreased. However, for the target in the body of the pancreas, VMAT showed a lower maximum dose for the stomach (median 30.93GyE, p<0.05) and toxicity of gastric bleed (median: 8.67%, p<0.05) compared to two-field IMPT and three-field IMPT, while other maximum doses and NTCPs were similar. The RMSD volume histogram (RVH) analysis shows that three-field IMPT provided better robustness for targets but not for OARs. Instead, three-field IMPT increased the Dmean of organs such as the stomach, duodenum, and intestine. CONCLUSION: The results indicated that the tumor locations could play a critical role in determining clinical benefits among different treatment modalities. Two-field IMPT could be a better option for LAPC patients whose tumors are located in the head of the pancreas. It provides lower severe toxicity for the stomach and duodenum. Nevertheless, VMAT is preferred for the body with better protection for the possibility of gastric bleed.

SELECTION OF CITATIONS
SEARCH DETAIL
...