Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(38): 12000-12009, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39259957

ABSTRACT

Graphene aerogels hold huge promise for the development of high-performance pressure sensors for future human-machine interfaces due to their ordered microstructure and conductive network. However, their application is hindered by the limited strain sensing range caused by the intrinsic stiffness of the porous microstructure. Herein, an anisotropic cross-linked chitosan and reduced graphene oxide (CCS-rGO) aerogel metamaterial is realized by reconfiguring the microstructure from a honeycomb to a buckling structure at the dedicated cross-section plane. The reconfigured CCS-rGO aerogel shows directional hyperelasticity with extraordinary durability (no obvious structural damage after 20 000 cycles at a directional compressive strain of ≤0.7). The CCS-rGO aerogel pressure sensor exhibits an ultrahigh sensitivity of 121.45 kPa-1, an unprecedented sensing range, and robust mechanical and electrical performance. The aerogel sensors are demonstrated to monitor human motions, control robotic hands, and even integrate into a flexible keyboard to play music, which opens a wide application potential in future human-machine interfaces.

2.
Angew Chem Int Ed Engl ; : e202411264, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136438

ABSTRACT

The surface chemistry of CeO2 is dictated by the well-defined facets, which exert great influence on the supported metal species and the catalytic performance. Here we report Pt1/CeO2 catalysts exhibiting specific structures of Pt-O coordination on different facets by using adequate preparation methods. The simple impregnation method results in Pt-O3 coordination on the predominantly exposed {111} facets, while the photo-deposition method achieves oriented atomic deposition for Pt-O4 coordination into the "nano-pocket" structure of {100} facets at the top. Compared to the impregnated Pt1/CeO2 catalyst showing normal redox properties and low-temperature activity for CO oxidation, the photo-deposited Pt1/CeO2 exhibits uncustomary strong metal-support interaction and extraordinary high-temperature stability. The preparation methods dictate the facet-dependent diversity of Pt-O coordination, resulting in the further activity-selectivity trade-off. By applying specific preparation routes, our work provides an example of disentangling the effects of support facets and coordination environments for nano-catalysts.

3.
Nat Commun ; 15(1): 5751, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982071

ABSTRACT

Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5-20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.

4.
Small ; : e2404011, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864206

ABSTRACT

While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.

5.
Nat Commun ; 14(1): 6851, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891176

ABSTRACT

Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.

6.
ACS Catal ; 13(20): 13816-13827, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37881788

ABSTRACT

The selective catalytic oxidation of NH3 (NH3-SCO) to N2 is an important reaction for the treatment of diesel engine exhaust. Co3O4 has the highest activity among non-noble metals but suffers from N2O release. Such N2O emissions have recently been regulated due to having a 300× higher greenhouse gas effect than CO2. Here, we design CuO-supported Co3O4 as a cascade catalyst for the selective oxidation of NH3 to N2. The NH3-SCO reaction on CuO-Co3O4 follows a de-N2O pathway. Co3O4 activates gaseous oxygen to form N2O. The high redox property of the CuO-Co3O4 interface promotes the breaking of the N-O bond in N2O to form N2. The addition of CuO-Co3O4 to the Pt-Al2O3 catalyst reduces the full NH3 conversion temperature by 50 K and improves the N2 selectivity by 20%. These findings provide a promising strategy for reducing N2O emissions and will contribute to the rational design and development of non-noble metal catalysts.

7.
J Am Chem Soc ; 145(4): 2252-2263, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36657461

ABSTRACT

It is highly desirable to fabricate an accessible catalyst surface that can efficiently activate reactants and desorb products to promote the local surface reaction equilibrium in heterogeneous catalysis. Herein, rare-earth oxycarbonates (Ln2O2CO3, where Ln = La and Sm), which have molecular-exchangeable (H2O and CO2) surface structures according to the ordered layered arrangement of Ln2O22+ and CO32- ions, are unearthed. On this basis, a series of Ln2O2CO3-supported Cu catalysts are prepared through the deposition precipitation method, which provides excellent catalytic activity and stability for the water-gas shift (WGS) reaction. Density functional theory calculations combined with systematic experimental characterizations verify that H2O spontaneously dissociates on the surface of Ln2O2CO3 to form hydroxyl by eliminating the carbonate through the release of CO2. This interchange efficiently promotes the WGS reaction equilibrium shift on the local surface and prevents the carbonate accumulation from hindering the active sites. The discovery of the unique layered structure provides a so-called "self-cleaning" active surface for the WGS reaction and opens new perspectives about the application of rare-earth oxycarbonate nanomaterials in C1 chemistry.

8.
Nat Commun ; 13(1): 5800, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192383

ABSTRACT

In heterogeneous catalysis, the interface between active metal and support plays a key role in catalyzing various reactions. Specially, the synergistic effect between active metals and oxygen vacancies on support can greatly promote catalytic efficiency. However, the construction of high-density metal-vacancy synergistic sites on catalyst surface is very challenging. In this work, isolated Pt atoms are first deposited onto a very thin-layer of MoO3 surface stabilized on γ-Mo2N. Subsequently, the Pt-MoOx/γ-Mo2N catalyst, containing abundant Pt cluster-oxygen vacancy (Ptn-Ov) sites, is in situ constructed. This catalyst exhibits an unmatched activity and excellent stability in the reverse water-gas shift (RWGS) reaction at low temperature (300 °C). Systematic in situ characterizations illustrate that the MoO3 structure on the γ-Mo2N surface can be easily reduced into MoOx (2 < x < 3), followed by the creation of sufficient oxygen vacancies. The Pt atoms are bonded with oxygen atoms of MoOx, and stable Pt clusters are formed. These high-density Ptn-Ov active sites greatly promote the catalytic activity. This strategy of constructing metal-vacancy synergistic sites provides valuable insights for developing efficient supported catalysts.

9.
Nat Commun ; 13(1): 2443, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508459

ABSTRACT

The metal-support interfaces between metals and oxide supports have long been studied in catalytic applications, thanks to their significance in structural stability and efficient catalytic activity. The metal-rare earth oxide interface is particularly interesting because these early transition cations have high electrophilicity, and therefore good binding strength with Lewis basic molecules, such as H2O. Based on this feature, here we design a highly efficient composite Ni-Y2O3 catalyst, which forms abundant active Ni-NiOx-Y2O3 interfaces under the water-gas shift (WGS) reaction condition, achieving 140.6 µmolCO gcat-1 s-1 rate at 300 °C, which is the highest activity for Ni-based catalysts. A combination of theory and ex/in situ experimental study suggests that Y2O3 helps H2O dissociation at the Ni-NiOx-Y2O3 interfaces, promoting this rate limiting step in the WGS reaction. Construction of such new interfacial structure for molecules activation holds great promise in many catalytic systems.

10.
Nat Commun ; 13(1): 867, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35165303

ABSTRACT

For high-temperature catalytic reaction, it is of significant importance and challenge to construct stable active sites in catalysts. Herein, we report the construction of sufficient and stable copper clusters in the copper‒ceria catalyst with high Cu loading (15 wt.%) for the high-temperature reverse water gas shift (RWGS) reaction. Under very harsh working conditions, the ceria nanorods suffered a partial sintering, on which the 2D and 3D copper clusters were formed. This partially sintered catalyst exhibits unmatched activity and excellent durability at high temperature. The interaction between the copper and ceria ensures the copper clusters stably anchored on the surface of ceria. Abundant in situ generated and consumed surface oxygen vacancies form synergistic effect with adjacent copper clusters to promote the reaction process. This work investigates the structure-function relation of the catalyst with sintered and inhomogeneous structure and explores the potential application of the sintered catalyst in C1 chemistry.

11.
ACS Appl Mater Interfaces ; 14(6): 8575-8586, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35124965

ABSTRACT

The water gas shift (WGS) reaction is a key process in the industrial hydrogen production and the development and application of the proton exchange membrane fuel cell. Metal oxide-supported highly dispersed Pt has been proved as an efficient catalyst for the WGS reaction. In this work, a series of supported 0.5Pt/xCe-10Ti (x = 1, 3, or 5) catalysts with different Ce/Ti molar ratios were prepared by a simple deposition-precipitation method. Compared with single TiO2- or CeO2-supported Pt catalysts, it was found that the 0.5Pt/3Ce-10Ti catalyst showed an obvious advantage in activity for the WGS reaction. In this catalyst, dispersed CeO2 nanoparticles were supported on the TiO2 sheets, and Pt single atoms and nanoparticles were located on CeO2 and at the boundary of TiO2 and CeO2, respectively. It found that the reduction ability of the supported Pt catalyst was remarkably improved; meanwhile, the adsorption strength of CO on the surface of 0.5Pt/3Ce-10Ti was moderate. The heterostructured CeO2-TiO2 support gave an effective regulation on the Pt status and further influenced the CO adsorption ability, inducing excellent WGS reaction activity. This work provides a reference for the development and application of heterostructured materials in heterogeneous catalysis.

12.
Langmuir ; 37(35): 10499-10509, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34435787

ABSTRACT

The dissociation of H2O is a crucial aspect for the water-gas shift reaction, which often occurs on the vacancies of a reducible oxide support. However, the vacancies sometimes run off, thus inhibiting H2O dissociation. After high-temperature treatment, the ceria supports were lacking vacancies because of sintering. Unexpectedly, the in situ generation of surface oxygen vacancies was observed, ensuring the efficient dissociation of H2O. Due to the surface reconstruction of ceria nanorods, the copper species sustained were highly dispersed on the sintered support, on which CO was adsorbed efficiently to react with hydroxyls from H2O dissociation. In contrast, no surface reconstruction occurred in ceria nanoparticles, leading to the sintering of copper species. The sintered copper species were averse to adsorb CO, so the copper-ceria nanoparticle catalyst had poor reactivity even when surface oxygen vacancies could be generated in situ.

13.
Nat Commun ; 12(1): 3342, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34099668

ABSTRACT

As the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 µmolCO2·gPt-1·s-1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt-O-Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.

14.
Inorg Chem ; 60(7): 5183-5189, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33761745

ABSTRACT

A facile spray pyrolysis method is introduced to construct the hollow CeO2-Al2O3 spheres with atomically dispersed Fe. Only nitrates and ethanol were involved during the one-step preparation process using the ultrasound spray pyrolysis approach. Detailed explorations demonstrated that differences in the pyrolysis temperature of the precursors and heat transfer are crucial to the formation of the hollow nanostructure. In addition, iron species were in situ atomically dispersed on the as-formed CeO2-Al2O3 hollow spheres via this strategy, which demonstrated promising potential in transferring syn-gas to valuable gasoline products.

15.
Langmuir ; 37(11): 3270-3280, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33705652

ABSTRACT

Supported Au catalysts are widely used for CO oxidation due to their extremely high activity, and the modification of a support structure is a crucial method to improve catalytic performance. Herein, we prepared gold catalysts supported on flaky TiO2 and on TiO2 hydrogenated at different temperatures (200, 400, and 600 °C). We found that the sample with the support pretreated in hydrogen at 600 °C (0.5Au/TiO2-H600) showed the greatest advantages in activity and stability over the sample with as-prepared TiO2 nanosheets (0.5Au/TiO2-UC). First, calcination at 600 °C changed the exposed surface of TiO2 from {001} to {101}, and gold nanoparticles (2-3 nm) were observed as highly reactive species on 0.5Au/TiO2-H600. Moreover, the increase of oxygen vacancies on the surface of 0.5Au/TiO2-H600 was conducive to oxygen activation and promoted the catalytic activity. Therefore, we emphasized the important role of the support and gave an effective method to improve the catalytic performance by regulating the support structure.

16.
Langmuir ; 36(38): 11196-11206, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32787057

ABSTRACT

Copper manganese composite (hopcalite) catalyst has been widely explored for low-temperature CO oxidation reactions. However, the previous reports on the stabilization of such composite catalysts have shown that they deactivated severely under moist conditions. Herein, we developed an α-MnO2 nanorod-supported copper oxide catalyst that is very active and stable for the conditions with or without moisture by the deposition precipitation (DP) method. Incredibly, the CuO/MnO2 DP catalyst (with 5 wt % copper loading) achieves superior activity with a reaction rate of 9.472 µmol-1·gcat-1·s-1 even at ambient temperatures, which is at least double times of that for the reported copper-based catalyst. Additionally, the CuO/MnO2 DP catalyst is significantly more stable than the copper manganese composite catalysts reported in the literature under the presence of 3% water vapor as well as without moisture. A correlation between the catalytic CO oxidation activity and textural characteristics was derived via multitechnique analyses. The results imply that the superior activity of the CuO/MnO2 DP catalyst is associated with the proper adsorption of CO on partially reduced copper oxide as Cu(I)-CO and more surface oxygen species at the interfacial site of the catalyst.

17.
J Am Chem Soc ; 142(31): 13362-13371, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32658462

ABSTRACT

Apart from active metals, supports also contribute significantly to the catalytic performance of supported metal catalysts. On account of the formed strain and defects, the heterostructured surface of the support may play a crucial role to activate the reactant molecules, while it is usually neglected. In this work, the Pt/γ-Mo2N catalyst was prepared via a facile solution method. This Pt/γ-Mo2N catalyst showed excellent activity and stability for catalyzing the water-gas shift (WGS) reaction. The reaction rates at 240 °C were 16.5 molCO molPt-1s-1 in product-free gas and 5.36 molCO molPt-1 s-1 in full reformate gas, which were almost 20 times that of the catalysts reported. It is found that the molybdenum species in the surface of the Pt/γ-Mo2N catalyst is molybdenum oxide as MoO3. This surface MoO3 is very easily reduced even at room temperature, and it transformed into highly distorted MoOx (2 < x < 3) in the WGS reaction. The MoOx on the catalyst surface greatly enhanced the capability of generating active oxygen vacancies to dissociate H2O molecules, which induced unexpectedly superior catalytic performance. Therefore, the intrinsically active surface in the Pt/γ-Mo2N catalyst for the WGS reaction was molybdenum oxide as MoOx (2 < x < 3).

18.
Biotechnol Biofuels ; 12: 244, 2019.
Article in English | MEDLINE | ID: mdl-31636703

ABSTRACT

BACKGROUND: Trichoderma reesei is widely used for cellulase production and accepted as an example for cellulase research. Cre1-mediated carbon catabolite repression (CCR) can significantly inhibit the transcription of cellulase genes during cellulase fermentation in T. reesei. Early efforts have been undertaken to modify Cre1 for the release of CCR; however, this approach leads to arrested hyphal growth and decreased biomass accumulation, which negatively affects cellulase production. RESULTS: In this study, novel fusion transcription factors (fTFs) were designed to release or attenuate CCR inhibition in cellulase transcription, while Cre1 was left intact to maintain normal hyphal growth. Four designed fTFs were introduced into the T. reesei genome, which generated several transformants, named Kuace3, Kuclr2, Kuace2, and Kuxyr1. No obvious differences in growth were observed between the parent and transformant strains. However, the transcription levels of cel7a, a major cellulase gene, were significantly elevated in all the transformants, particularly in Kuace2 and Kuxyr1, when grown on lactose as a carbon source. This suggested that CCR inhibition was released or attenuated in the transformant strains. The growth of Kuace2 and Kuxyr1 was approximately equivalent to that of the parent strain in fed-batch fermentation process. However, we observed a 3.2- and 2.1-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of the parent strain. Moreover, we observed a 6.1- and 3.9-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of Δcre1 strain. CONCLUSIONS: A new strategy based on fTFs was successfully established in T. reesei to improve cellulase titers without impairing fungal growth. This study will be valuable for lignocellulosic biorefining and for guiding the development of engineering strategies for producing other important biochemical compounds in fungal species.

19.
J Am Chem Soc ; 141(44): 17548-17557, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31607122

ABSTRACT

The construction of stable active site in nanocatalysts is of great importance but is a challenge in heterogeneous catalysis. Unexpectedly, coordination-unsaturated and atomically dispersed copper species were constructed and stabilized in a sintered copper-ceria catalyst through air-calcination at 800 °C. This sintered copper-ceria catalyst showed a very high activity for CO oxidation with a CO consumption rate of 6100 µmolCO·gCu-1·s-1 at 120 °C, which was at least 20 times that of other reported copper catalysts. Additionally, the excellent long-term stability was unbroken under the harsh cycled reaction conditions. Based on a comprehensive structural characterization and mechanistic study, the copper atoms with unsaturated coordination in the form of Cu1O3 were identified to be the sole active site, at which both CO and O2 molecules were activated, thus inducing remarkable CO oxidation activity with a very low copper loading (1 wt %).

20.
Nat Commun ; 10(1): 3470, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375672

ABSTRACT

As the water-gas shift (WGS) reaction serves as a crucial industrial process, strategies for developing robust WGS catalysts are highly desiderated. Here we report the construction of stabilized bulk-nano interfaces to fabricate highly efficient copper-ceria catalyst for the WGS reaction. With an in-situ structural transformation, small CeO2 nanoparticles (2-3 nm) are stabilized on bulk Cu to form abundant CeO2-Cu interfaces, which maintain well-dispersed under reaction conditions. This inverse CeO2/Cu catalyst shows excellent WGS performances, of which the activity is 5 times higher than other reported Cu catalysts. Long-term stability is also very solid under harsh conditions. Mechanistic study illustrates that for the inverse CeO2/Cu catalyst, superb capability of H2O dissociation and CO oxidation facilitates WGS process via the combination of associative and redox mechanisms. This work paves a way to fabricate robust catalysts by combining the advantages of bulk and nano-sized catalysts. Catalysts with such inverse configurations show great potential in practical WGS applications.

SELECTION OF CITATIONS
SEARCH DETAIL