Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Angew Chem Int Ed Engl ; 63(17): e202318811, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38419371

ABSTRACT

In nature, ceramides are a class of sphingolipids possessing a unique ability to self-assemble into protein-permeable channels with intriguing concentration-dependent adaptive channel cavities. However, within the realm of artificial ion channels, this interesting phenomenon is scarcely represented. Herein, we report on a novel class of adaptive artificial channels, Pn-TPPs, based on PEGylated cholic acids bearing triphenylphosphonium (TPP) groups as anion binding motifs. Interestingly, the molecules self-assemble into chloride ion channels at low concentrations while transforming into small molecule-permeable nanopores at high concentrations. Moreover, the TPP groups endow the molecules with mitochondria-targeting properties, enabling them to selectively drill holes on the mitochondrial membrane of cancer cells and subsequently trigger the caspase 9 apoptotic pathway. The anticancer efficacies of Pn-TPPs correlate with their abilities to form nanopores. Significantly, the most active ensembles formed by P5-TPP exhibits impressive anticancer activity against human liver cancer cells, with an IC50 value of 3.8 µM. While demonstrating similar anticancer performance to doxorubicin, P5-TPP exhibits a selectivity index surpassing that of doxorubicin by a factor of 16.8.


Subject(s)
Nanopores , Humans , Ion Channels , Organophosphorus Compounds/chemistry , Doxorubicin/chemistry
3.
ACS Biomater Sci Eng ; 10(3): 1507-1516, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38372256

ABSTRACT

Monochamus alternatus is an important stem-boring pest in forestry. However, the complex living environment of Monochamus alternatus creates a natural barrier to chemical control, resulting in a very limited control effect by traditional insecticidal pesticides. In this study, a stable pesticide dendritic mesoporous silica-loaded matrine nanopesticide (MAT@DMSNs) was designed by encapsulating the plant-derived pesticide matrine (MAT) in dendritic mesoporous silica nanoparticles (DMSNs). The results showed that MAT@DMSNs, sustainable nanobiopesticides with high drug loading capacity (80%) were successfully constructed. The release efficiency of DMSNs at alkaline pH was slightly higher than that at acidic pH, and the cumulative release rate of MAT was about 60% within 25 days. In addition, the study on the toxicity mechanism of MAT@DMSNs showed MAT@DMSNs were more effective than MAT and MAT (0.3% aqueous solutions) in touch and stomach toxicity, which might be closely related to their good dispersibility and permeability. Furthermore, MAT@DMSNs are also involved in water transport in trees, which can further transport the plant-derived insecticides to the target site and improve its insecticidal effect. Meanwhile, in addition, the use of essential oil bark penetrants in combination with MAT@DMSNs effectively avoids the physical damage to pines caused by traditional trunk injections and the development of new pests and diseases induced by the traditional trunk injection method, which provides a new idea for the application of biopesticides in the control of stem-boring pests in forestry.


Subject(s)
Nanoparticles , Pesticides , Animals , Matrines , Silicon Dioxide/pharmacology , Pesticides/pharmacology , Insecta
4.
Angew Chem Int Ed Engl ; 63(3): e202314666, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37864456

ABSTRACT

The development of stimuli-responsive artificial H+ /Cl- ion channels, capable of specifically disturbing the intracellular ion homeostasis of cancer cells, presents an intriguing opportunity for achieving high selectivity in cancer therapy. Herein, we describe a novel family of non-covalently stapled self-assembled artificial channels activatable by biocompatible visible light at 442 nm, which enables the co-transport of H+ /Cl- across the membrane with H+ /Cl- transport selectivity of 6.0. Upon photoirradiation of the caged C4F-L for 10 min, 90 % of ion transport efficiency can be restored, giving rise to a 10.5-fold enhancement in cytotoxicity against human colorectal cancer cells (IC50 =8.5 µM). The mechanism underlying cancer cell death mediated by the H+ /Cl- channels involves the activation of the caspase 9 apoptosis pathway as well as the scarcely reported disruption of the autophagic processes. In the absence of photoirradiation, C4F-L exhibits minimal toxicity towards normal intestine cells, even at a concentration of 200 µM.


Subject(s)
Ion Channels , Neoplasms , Humans , Ion Channels/metabolism , Ion Transport , Light , Chlorides/metabolism
5.
Mol Ther Nucleic Acids ; 31: 182-196, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36700050

ABSTRACT

Antisense oligonucleotides (ASOs) are promising therapeutics for intractable central nervous system (CNS) diseases. For this clinical application, neurotoxicity is one of the critical limitations. Therefore, an evaluation of this neurotoxicity from a behavioral perspective is important to reveal symptomatic dysfunction of the CNS and elucidate the underlying molecular mechanism. We here exploited a behavioral analysis method to categorize and quantify the acute neurotoxicity of mice administered with toxic ASOs via intracerebroventricular injection. The toxic ASOs were found to reduce consciousness and locomotor function in mice in a dose-dependent manner. Mechanistically, we analyzed the effects of modulators against receptors or channels, which regulate calcium influx of neurons, on the ASO neurotoxicity. Modulators promoting calcium influx mitigated, whereas those hindering calcium influx increased, in vivo neurotoxicity of ASOs in mice. In an in vitro assay to evaluate intracellular free calcium levels using rat primary cortical neurons, toxic ASOs reduced the calcium levels. The findings of this study demonstrated the behavioral characteristics of ASO-induced neurotoxicity and revealed that changes in intracellular free calcium levels are a part of the mechanism underlying the neurotoxic effects of ASO.

6.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683719

ABSTRACT

Pine wilt disease is a devastating forest disaster caused by Bursaphelenchus xylophilus, which has brought inestimable economic losses to the world's forestry due to lack of effective prevention and control measures. In this paper, a porous structure CuBTC was designed to deliver avermectin (AM) and a control vector insect Japanese pine sawyer (JPS) of B. xylophilus, which can improve the biocompatibility, anti-photolysis and delivery efficacy of AM. The results illustrated the cumulative release of pH-dependent AM@CuBTC was up to 12 days (91.9%), and also effectively avoided photodegradation (pH 9.0, 120 h, retention 69.4%). From the traceable monitoring experiment, the AM@CuBTC easily penetrated the body wall of the JPS larvae and was transmitted to tissue cells though contact and diffusion. Furthermore, AM@CuBTC can effectively enhance the cytotoxicity and utilization of AM, which provides valuable research value for the application of typical plant-derived nerve agents in the prevention and control of forestry pests. AM@CuBTC as an environmentally friendly nanopesticide can efficiently deliver AM to the larval intestines where it is absorbed by the larvae. AM@CuBTC can be transmitted to the epidemic wood and dead wood at a low concentration (10 mg/L).

8.
J Nanobiotechnology ; 20(1): 183, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35399073

ABSTRACT

BACKGROUND: Pine wilt disease as a devastating forest disaster result from Bursaphelenchus xylophilus that spread by stem-borers Monochamus alternatus feeding on pine leaves, which has brought inestimable economic losses to the world's forestry due to lack of effective prevention and control measures. In this paper, we put forward a proposal for utilizing nanoHKUST-1 to encapusulate the Pyrethrins II that a nerve agent extracted from plant to control M. alternatus, including toxicity mechanism research, traceable biopesticide monitoring, and environment assessment for the first time. The highly biocompatible nanoHKUST-1 can solve the problems of poor water solubility, easy degradation and low control efficiency of Pyrethrins II. RESULTS: The results illustrated the biopesticide loading efficiency of PthII@HKUST-1 reached 85% and the cumulative release of pH-dependent PthII@HKUST-1 was up to 15 days (90%), and also effectively avoid photodegradation (pH 7.0, retention 60.9%). 50 nm PthII@HKUST-1 made it easily penetrate the body wall of MA larvae and transmit to tissue cells through contact and diffusion. Moreover, PthII@HKUST-1 can effectively enhance the cytotoxicity and utilization of Pyrethrins II, which will provide valuable research value for the application of typical plant-derived nerve agents in the prevention and control of forestry pests. PthII@HKUST-1 as an environmentally friendly nano-pesticide can efficiently deliver Pyrethrins II to the larval intestines and absorbed by the larvae. PthII@HKUST-1 could also be transmitted to the epidemic wood and dead wood at a low concentration (10 mg/L). CONCLUSION: Here we speculate that nanoHKUST-1 will bring new opportunity to research biopesticide inhibition mechanism of different agricultural and forestry pests, which will break through the existing research limitations on development, utilization and traceable monitoring of biopesticide, especially for the study of targeting specific proteins.


Subject(s)
Coleoptera , Pesticides , Pinus , Pyrethrins , Animals , Biological Control Agents/pharmacology , Larva , Pesticides/pharmacology , Pyrethrins/pharmacology
9.
Ying Yong Sheng Tai Xue Bao ; 33(1): 104-110, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35224931

ABSTRACT

Methylglyoxal (MG) is a novel signaling molecule with multiple functions in plants. To explore the effects of MG on Chinese chestnut (Castanea mollissima) under drought stress, two-year-old 'Huangpeng' chestnut seedlings were treated with 15% polyethylene glycol (PEG) coupled with MG or its scavenger N-acetyl-L-cys-teine (NAC). We measured the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), and glyoxalase enzymes, including glyoxalase Ⅰ (GlyⅠ) and glyoxalase Ⅱ(GlyⅡ). Contents of antioxidants such as endogenous MG, malondialdehyde (MDA), H2O2, and O2-· as well as the osmotic adjustment substances including proline (Pro), soluble sugar (SS), glycine betaine (GB) were also detected. The results showed that 0.5 mmol·L-1 MG significantly increased the activities of antioxidant enzymes (SOD, POD, CAT, APX, GR) and glyoxalase enzymes (GlyⅠ, GlyⅡ) in leaves of chestnut seedlings under drought stress, elevated the contents of osmotic adjustment substances (Pro, SS, GB) and antioxidant substances (ASA, GSH), and reduced the contents of MG, MDA, H2O2, O2-· and dehydroascorbate (DHA). Drought stress induced damages such as membrane lipid peroxidation and osmotic stress was alleviated by MG, leading to an overall improved adaptability of chestnut to drought stress. Moreover, the addition of MG scavenger NAC could reverse the effects induced by MG, indicating that MG had positive impacts on drought resistance of chestnut plants. Our study provided a theoretical basis for further exploring the mechanism of MG in alleviating drought stress induced symptoms in chestnut.


Subject(s)
Droughts , Fagaceae/drug effects , Pyruvaldehyde , Seedlings , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Fagaceae/physiology , Hydrogen Peroxide , Lipid Peroxidation , Oxidative Stress , Pyruvaldehyde/pharmacology , Seedlings/drug effects , Seedlings/physiology , Stress, Physiological
10.
Reprod Biol ; 22(1): 100578, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34844164

ABSTRACT

Though endometriosis is benign, however, it shares certain characteristics with cancers, such as the ability to invade and metastasize. Previous studies have demonstrated that S-phase kinase associated protein2 (SKP2) promotes invasion, tumorigenesis, and metastasis. However, its correlation with adenomyosis is unclear. Herein, we aimed to look into SKP2 expression patterns and regulatory effects on endometrial stromal cell (ESC) proliferation and invasion, and its internal mechanism in adenomyosis. Western blot, qRT-PCR, and immunochemistry were carried out for detecting SKP2 and ZEB1 expression in ESC of adenomyosis and adenomyosis endometrial tissue. The primary ESCs were identified using immunofluorescence. SKP2 knockdown was accomplished in vitro by transfecting a particular lentivirus vector. The colony formation and CCK-8 assays were carried out for assessing cell proliferation, while cell invasion potential was assessed using the transwell assay. Both SKP2 and ZEB1 were found to be significantly upregulated in adenomyosis endometrial tissue. Knockdown of SKP2 inhibited adenomyotic ESC invasion and proliferation. Further experiments showed that knocking out SKP2 reduced ZEB1 expression in adenomyotic ESCs. Our results showed that SKP2 could regulate ZEB1 expression, and increased SKP2 may play a role in the pathogenesis of adenomyosis and stimulating ESC proliferation and invasion.


Subject(s)
Adenomyosis , Endometriosis , S-Phase Kinase-Associated Proteins , Adenomyosis/genetics , Adenomyosis/metabolism , Adenomyosis/pathology , Cell Proliferation , Endometriosis/pathology , Endometrium/metabolism , Female , Humans , Stromal Cells/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
11.
Zootaxa ; 5047(5): 583-588, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34810821

ABSTRACT

A new species in the genus Conophymacris Willemse, 1933 from Yunnan, China is described. The new species Conophymacris reni sp. nov. is similar to C. jiulongensis Zheng et al., 2009, but differs from latter in width of vertex between eyes of male equal to 2.8 width of frontal ridge between antennae, epiproct of male width longer than length, cercus of male apical part not wider, tegmina extending over the hind margin of first abdominal tergum, hind tibia all red, epiphallus ancorae small, lower than anterior projection, lophi not acute, width of subgenital plate shorter than its length and hind margin with 1 tooth in female. Type specimens are deposited in the Natural Museum of Hebei University, Baoding, Hebei, China.


Subject(s)
Orthoptera , Animal Distribution , Animal Structures , Animals , Body Size , China , Female , Male , Organ Size
12.
Front Genet ; 12: 715526, 2021.
Article in English | MEDLINE | ID: mdl-34484302

ABSTRACT

Sulfur, an essential mineral element for animals, mainly exists in the form of organic sulfur-containing amino acids (SAAs), such as cystine, methionine, and cysteine, within the body. The content, form, and structure of sulfur play an important role in determining the wool fiber quality. In addition, keratin-associated proteins, one of the most crucial wool fiber components, are rich in SAAs. However, sulfur metabolism from the blood to the skin and hair follicles remains unclear. In this study, we analyzed high-sulfur protein gene and sulfur metabolism genes in the cashmere goat and explored the effects of melatonin on their expression. In total, 53 high-sulfur protein genes and 321 sulfur metabolism genes were identified. We found that high-sulfur protein genes were distributed in the 3-4 and 144M regions of chromosome 1 and the 40-41M region of chromosome 19 in goats. Moreover, all year round, allele-specific expression (ASE) is higher in the 40-41M region of chromosome 19 than in the other regions. Total of 47 high-sulfur protein genes showed interaction with transcription factors and cofactors with ASE. These transcription factors and cofactors were inhibited after melatonin implantation. The network analysis revealed that melatonin may activate the sulfur metabolism process via the regulation of the genes related to cell energy metabolism and cell cycle in the skin, which provided sufficient SAAs for wool and cashmere growth. In conclusion, our findings provide a new insight into wool growth regulation by sulfur metabolism genes and high-sulfur protein genes in cashmere goats.

13.
Colloids Surf B Biointerfaces ; 201: 111627, 2021 May.
Article in English | MEDLINE | ID: mdl-33639510

ABSTRACT

As a first-line tuberculostatic drug, isoniazid (INH) plays effective and irreplaceable role in prevention and treatment of tuberculosis. In this work, a rapid and simple signal-on fluorescence approach is established for INH assay by employing a platform composed of silver nanoclusters (AgNCs) and MnO2 nanosheets. In the proposed sensing system, strong red fluorescence of poly (methacrylic acid)-stabilized AgNCs can be greatly quenched after they attach to the surfaces of MnO2 nanosheets. With the addition of INH, MnO2 nanosheets are reduced to Mn2+ and subsequently release the AgNCs, which leads to obvious fluorescence recovery again. Based on this mechanism, highly sensitive detection of INH in the range of 0.8-200 µM is realized (detection limit: 476 nM). The present strategy shows remarkable advantages including simplicity, rapidness, high sensitivity and wide detectable range. This method is also practical and comparable to high-performance liquid chromatography, which can be applied to detect INH in human urine and serum samples as well as pharmaceutical products.


Subject(s)
Manganese Compounds , Pharmaceutical Preparations , Fluorescent Dyes , Humans , Isoniazid , Limit of Detection , Oxides , Silver
14.
J Nanobiotechnology ; 18(1): 165, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33168011

ABSTRACT

BACKGROUND: Trunk-boring pests (TBPs) are an important type of forest pest, TBPs not only feed on the branches and trunks of trees, but also spread quarantine diseases in forests. However, because the larvae of TBPs live inside the trunk and are well concealed, prevention and control are difficult. The lack of effective control methods leads to the death of many trees in forests. In this study, a novel nanopesticide featuring high bioactivity and slow-release properties was developed to control TBPs. Thiacloprid (THI), which is commonly used to control Coleoptera species, was used as a model pesticide. RESULTS: The oleophobic properties of bovine serum albumin (BSA) were exploited to encapsulate the hydrophobic pesticide THI by self-assembly, and the size of the obtained nanoparticles, THI@BSA·NPs, was approximately 23 nm. The loading efficiency reached 70.4%, and THI@BSA·NPs could be released continuously for over 15 days, with the cumulative release reaching 93.5%. The fluorescein isothiocyanate (FITC)-labeled nanoparticles were evenly distributed in the digestive tract and body surface of a typical TBPs, M. alternatus, and the stomach and contact toxicities increased by 33.7% and 25.9%, respectively, compared with those of free THI. Furthermore, the results showed that the transport efficiency of THI@BSA·NPs was highest at a concentration of 50 µg/mL, and the THI@BSA·NPs content in the trunk, from to lower to higher layers, was 8.8, 8.2, 7.6, and 5.8 µg/g. At the same time, THI@BSA·NPs also exhibited high transport efficiency in dead trees. CONCLUSION: The transport efficiency and toxicity of the active ingredients are the key factors for the control of TBPs. This work provided idea for the application of biological delivery system encapsulated hydrophobic pesticides. The novel self-assembled THI@BSA·NPs have promising potential for sustainable control of TBPs.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Pesticides/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cell Line, Tumor , Larva/drug effects , Nanoparticles/toxicity , Neonicotinoids/chemistry , Particle Size , Pesticides/toxicity , Stomach/drug effects , Thiazines/chemistry , Trees
15.
Eur J Med Chem ; 194: 112229, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32222677

ABSTRACT

Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Neoplasms/drug therapy , Organoplatinum Compounds/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/chemistry , Humans , Neoplasms/metabolism , Neoplasms/pathology , Organoplatinum Compounds/chemistry , Prodrugs/chemistry
16.
FEBS Lett ; 594(9): 1413-1423, 2020 05.
Article in English | MEDLINE | ID: mdl-31990989

ABSTRACT

Gapmer-type antisense oligonucleotides have not yet been approved for the treatment of central nervous system diseases, whereas steric-blocking-type antisense oligonucleotides have been well-developed for clinical use. We here characterize a new type of double-stranded oligonucleotides, overhanging-duplex oligonucleotides, which are composed of the parent gapmer and its extended complementary RNA. By intracerebroventricular injection, overhanging oligonucleotides show greater silencing potency with more efficient delivery into mouse brains than the parent single-stranded gapmer. Structure-activity relationship analyses reveal that the potency enhancement requires 13-mer or more overhanging oligonucleotides with a phosphorothioate backbone. Overhanging oligonucleotides provide a new platform of therapeutic oligonucleotides for gene modulation in the central nervous system.


Subject(s)
Brain/physiology , Gene Silencing/physiology , Nucleic Acid Heteroduplexes/administration & dosage , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Female , Gene Expression Regulation , Injections, Intraventricular , Mice, Inbred ICR , Nucleic Acid Heteroduplexes/cerebrospinal fluid , Nucleic Acid Heteroduplexes/chemistry , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/cerebrospinal fluid , Oligonucleotides, Antisense/chemistry , tau Proteins/genetics
17.
Mikrochim Acta ; 186(9): 609, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31392427

ABSTRACT

Tiopronin is a widely used drug for treatment of cystinuria, rheumatoid arthritis and hepatic disorders. It is also an antidote to heavy metal poisoning and a radioprotective agent. A method is described for rapid and sensitive determination of tiopronin using DNA-stabilized silver nanoclusters (DNA-AgNCs) as a fluorescent probe. Tiopronin can selectively bind to DNA-AgNCs to form a stable Ag-S bond upon which the red photoluminescence (best measured at excitation/emission wavelengths of 590/640 nm) is quenched. The finding is used to design an assay that has a linear response in the 1-150 nM tiopronin concentration range and a 270 pM limit of detection. Compared with previously reported methods, the present approach is more rapid, highly sensitive and selective. It has been successfully applied in the detection of tiopronin in spiked urine and serum, and in pharmaceutical products (tablets and injections). Graphical abstract An ultrasensitive and reliable method for tiopronin assay is developed using red-emissive silver nanoclusters as a fluorescent probe. It has been successfully applied in the determination of tiopronin in biological fluids and pharmaceutical products.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Nanostructures/chemistry , Silver/chemistry , Tiopronin/analysis , Base Sequence , DNA/genetics , Humans , Tiopronin/blood , Tiopronin/urine
18.
Opt Express ; 24(13): 15012-20, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410652

ABSTRACT

A direct-liquid-cooled side-pumped Nd:YAG multi-disk QCW laser resonator is presented, in which the oscillating laser propagates through multiple thin disks and cooling flow layers in Brewster angle. Twenty Nd:YAG thin disks side-pumped by LD arrays are directly cooled by flowing deuteroxide at the end surfaces. A laser output with the highest pulse energy of 17.04 J is obtained at the pulse width of 250 µs and repetition rate of 25 Hz, corresponding to an optical-optical efficiency of 34.1% and a slope efficiency of 44.5%. The maximum average output power of 7.48 kW is achieved at the repetition rate of 500 Hz. Due to thermal effects, the corresponding optical-optical efficiency decreases to 30%. Under the 12.5 kW pumping condition while not oscillating, the wavefront of a He-Ne probe passing through the gain module is as low as 0.256 µm (RMS) with the defocus and tetrafoil subtracted.

19.
Cell Physiol Biochem ; 35(6): 2169-80, 2015.
Article in English | MEDLINE | ID: mdl-25896413

ABSTRACT

BACKGROUND/AIMS: Adenomyosis is a disease in which ectopic endometrial glands and stromal cells appear in the uterine myometrium. Despite its prevalence, the molecular mechanisms involved in the development of adenomyosis are largely unknown. The aim of this study was to investigate the role of miR-10b and its target genes ZEB1 and PIK3CA in adenomyosis. METHODS: 1387 miRNAs in human normal endometrium and ectopic endometrial lesions of adenomyosis using a microarray screen assay. The significant differential expression of 10 miRNAs was confirmed by qRT-PCR. The expression of miR-10b in endometrial epithelial cells isolated from normal endometrium and paired eutopic and ectopic endometrium of adenomyosis was measured by qRT-PCR. Subsequently, the targets of miR-10b were predicted by bioinformatics and confirmed using a luciferase assay, and the mRNA and protein expression of ZEB1 and PIK3CA were assessed in the endometrium or endometrial epithelial cells by qRT-PCR and western blotting or immunohistochemical analysis. Cell migration and cell invasion of endometrial epithelial cells with different treatments by Transwell assays. The expression of p-AKT, Akt and E-cadherin proteins was determined by Western blot analysis. RESULTS: MiR-10b expression was significantly downregulated in both adenomyotic lesions and adenomyotic epithelial cells. MiR-10b overexpression in adenomyotic epithelial cells inhibited cell migration and invasion. We then demonstrated that miR-10b directly targets the 3'-UTRs of ZEB1 and PIK3CA, and downregulates ZEB1 and PIK3CA in adenomyotic epithelial cells, leading to increased E-cadherin expression and decreased Akt phosphorylation. CONCLUSIONS: miR-10b directly targets ZEB1 and PIK3CA to curb adenomyotic epithelial cell invasiveness via upregulation of E-Cadherin and inhibition of Akt phosphorylation.


Subject(s)
Cadherins/genetics , Epithelial Cells/pathology , Homeodomain Proteins/genetics , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Transcription Factors/genetics , Adult , Antigens, CD , Case-Control Studies , Cell Movement/genetics , Cell Proliferation/genetics , Class I Phosphatidylinositol 3-Kinases , Down-Regulation/genetics , Endometrium/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Phosphorylation/genetics , Up-Regulation/genetics , Zinc Finger E-box-Binding Homeobox 1
20.
Cell Physiol Biochem ; 32(3): 581-90, 2013.
Article in English | MEDLINE | ID: mdl-24021963

ABSTRACT

BACKGROUND/AIMS: Endometrial carcinoma (EC) is the most common gynecological malignancy among women worldwide. Despite its prevalence, the molecular mechanisms underlying endometrial carcinogenesis are poorly understood. The purpose of this study was to examine the role of microRNA-182 and its target gene transcription elongation factor A-like 7 (TCEAL7) in EC. METHODS: The expression of miR-182 in human normal endometrial epithelial cells (NEEC) and in three human endometrial carcinoma cell lines (HEC-1B, RL95-2 and AN3CA) was measured by qRT-PCR, and the mRNA and protein expression of TCEAL7 were assessed in the same three endometrial carcinoma cell lines and NEEC by qRT-PCR and western blotting, respectively. Subsequently, the target of miR-182 was predicted by bioinformatics and confirmed using a luciferase assay. Cell proliferation and colony formation of RL95-2 cells were examined by MTT assay and crystal violet staining, respectively. The expression of NFκB-p65, c-Myc and cyclin D1 proteins was determined by Western blot analysis. RESULTS: MiR-182 was significantly upregulated and TCEAL7 was downregulated in EC cell lines compared to NEEC. We showed that MiR-182 binds directly to a conserved 8 bp sequence in the 3'-UTR of TCEAL7, and inhibition of miR-182 upregulated TCEAL7 mRNA and protein expression to levels comparable to those induced by lentiviral-mediated overexpression of TCEAL7. MiR-182 inhibition decreased cell proliferation and colony formation ability, downregulated the expression of the pro-proliferative genes c-Myc and cyclin D1, and inhibited NFκB activation, and these effects were mimicked by TCEAL7 overexpression. CONCLUSIONS: miR-182 acts as an oncogenic miRNA in EC, promoting cell proliferation by targeting the tumor suppressor gene TCEAL7 and modulating the activity of its downstream effectors c-Myc, cyclin D1 and NFκB.


Subject(s)
MicroRNAs/metabolism , Nuclear Proteins/metabolism , 3' Untranslated Regions , Cell Line , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Humans , MicroRNAs/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...