Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(6): e2305605, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37566706

ABSTRACT

Potassium-ion batteries (PIBs) are gradually gaining attention owing to their natural abundance, excellent security, and high energy density. However, developing excellent organic cathode materials for PIBs to overcome the poor cycling stability and slow kinetics caused by the large radii of K+ ions is challenging. This study demonstrates for the first time the application of a hexaazanonaphthalene (HATN)-based 2D π-d conjugated metal-organic framework (2D c-MOF) with dual-active centers (Cu-HATNH) and integrates Cu-HATNH with carbon nanotubes (Cu-HATNH@CNT) as the cathode material for PIBs. Owing to this systematic module integration and more exposed active sites with high utilization, Cu-HATNH@CNT exhibits a high initial capacity (317.5 mA h g-1 at 0.1 A g-1 ), excellent long-term cycling stability (capacity retention of 96.8% at 5 A g-1 after 2200 cycles), and outstanding rate capacity (147.1 mA h g-1 at 10 A g-1 ). The reaction mechanism and performance are determined by combining experimental characterization and density functional theory calculations. This contribution provides new opportunities for designing high-performance 2D c-MOF cathodes with multiple active sites for PIBs.

2.
Small ; 20(4): e2305866, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712131

ABSTRACT

The eco-friendliness, safety, and affordability of aqueous potassium batteries (AKIBs) have made them popular for large-scale energy storage devices. However, the cycling and rate performance of research materials, particularly cobalt hexacyanoferrate, have yet to meet satisfactory standards. Herein, a room-temperature drafted K1.66 Fe0.25 Co0.75 [Fe(CN)6 ]·0.83H2 O (KFCHCF) sample is reported using an in situ substitution strategy. A higher concentration of ferrocyanide ions decreases the water content and increases the potassium content, while citric acid works as a chelating agent and is responsible for Fe-substitution in the KFCHCF sample. The resultant KFCHCF sample exhibits good rate performance, and about 97% and 90.6% of discharge capacity are conserved after 400 and 1000 cycles at 100 and 200 mA g-1 , respectively. The full cell using the KFCHCF cathode and 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide (PNTCDA) anode maintains ≈74.93% and 74.35% of discharge capacity at 200 mA g-1 and 1000 mA g-1 for 1000 and >10,000 cycles, respectively. Furthermore, ex situ characterizations demonstrate the high reversibility of K-ions and structural stability during the charge-discharge process. Such high performance is attributed to the fast K-ion migration and crystal structure stabilization caused by in situ Fe-substitution in the KFCHCF sample. Other hexacyanoferrates can be synthesized using this method and used in grid-scale storage systems.

3.
Small ; 19(46): e2303593, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37467289

ABSTRACT

Aqueous zinc ion batteries (ZIBs), especially those with self-charging properties, have been promisingly developed in recent years. Yet, most inorganic materials feature high redox potential, which limit their development in the self-charging field. To achieve this target, by pre-embedding potassium ions into δ-MnO2 to reduce the energy barrier in oxygen adsorption, the first application of MnO2 in self-charging ZIBs is realized. The design features a facile two-electrode configuration with no excessively complex component to allow for energy storage and conversion. Due to the voltage difference between the oxygen in the air and the discharge products, a redox reaction can be carried out spontaneously to realize the self-charging process. After the chemical self-charging process, the Zn-K0.37 MnO2 ·0.54H2 O/C cell achieves an open circuit voltage of around 1.42 V and a discharge capacity of 201 mAh g-1 , reflecting the promising self-charging capability. Besides, the chemically self-charging ZIBs operate well in multiple modes of constant current charge/discharge/chemical charging. And decent cycling capability can also be achieved at extreme temperatures and high mass loading. This work promotes the development of ZIBs and further broadens the application of inorganic metal oxides in the self-charging systems.

4.
Adv Mater ; 35(28): e2300911, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36912711

ABSTRACT

The p-n junction with bipolar characteristics sets the fundamental unit to build electronics while its unique rectification behavior constrains the degree of carrier tunability for expanded functionalities. Herein, a bipolar-junction photoelectrode employed with a gallium nitride (GaN) p-n homojunction nanowire array that operates in electrolyte is reported, demonstrating bipolar photoresponse controlled by different wavelengths of light. Significantly, with rational decoration of a ruthenium oxides (RuOx ) layer on nanowires guided by theoretical modeling, the resulting RuOx /p-n GaN photoelectrode exhibits unambiguously boosted bipolar photoresponse by an enhancement of 775% and 3000% for positive and negative photocurrents, respectively, compared to the pristine nanowires. The loading of the RuOx layer on nanowire surface optimizes surface band bending, which facilitates charge transfer across the GaN/electrolyte interface, meanwhile promoting the efficiency of redox reaction for both hydrogen evolution reaction and oxygen evolution reaction which corresponds to the negative and positive photocurrents, respectively. Finally, a dual-channel optical communication system incorporated with such photoelectrode is constructed with using only one photoelectrode to decode dual-band signals with encrypted property. The proposed bipolar device architecture presents a viable route to manipulate the carrier dynamics for the development of a plethora of multifunctional optoelectronic devices for future sensing, communication, and imaging systems.


Subject(s)
Photochemistry , Light , Electrolytes/chemistry , Photochemistry/instrumentation , Photochemistry/methods , Oxides/chemistry , Ruthenium Compounds/chemistry , Nanowires/chemistry
5.
ACS Nano ; 17(4): 3901-3912, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36753692

ABSTRACT

The physicochemical properties of a semiconductor surface, especially in low-dimensional nanostructures, determine the electrical and optical behavior of the devices. Thereby, the precise control of surface properties is a prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for promoting device characteristics. Here, we report a facile approach to suppress the photocorrosion effect while boosting the photoresponse performance of n-GaN nanowires in a constructed photoelectrochemical-type photodetector by employing Co3O4 nanoclusters as a hole charging layer. Essentially, the Co3O4 nanoclusters not only alleviate nanowires from corrosion by optimizing the oxygen evolution reaction kinetics at the nanowire/electrolyte interface but also facilitate an efficient photogenerated carrier separation, migration, and collection process, leading to a significant ease of photocurrent attenuation (improved by nearly 867% after Co3O4 decoration). Strikingly, a record-high responsivity of 217.2 mA W-1 with an ultrafast response/recovery time of 0.03/0.02 ms can also be achieved, demonstrating one of the best performances among the reported photoelectrochemical-type photodetectors, that ultimately allowed us to build an underwater optical communication system based on the proposed nanowire array for practical applications. This work provides a perspective for the rational design of stable nanostructures for various applications in photo- and biosensing or energy-harvesting nanosystems.

6.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35889730

ABSTRACT

AlGaN nanorods have attracted increasing amounts of attention for use in ultraviolet (UV) optoelectronic devices. Here, self-assembled AlGaN nanorods with embedding quantum disks (Qdisks) were grown on Si(111) using plasma-assisted molecular beam epitaxy (PA-MBE). The morphology and quantum construction of the nanorods were investigated and well-oriented and nearly defect-free nanorods were shown to have a high density of about 2 × 1010 cm-2. By controlling the substrate temperature and Al/Ga ratio, the emission wavelengths of the nanorods could be adjusted from 276 nm to 330 nm. By optimizing the structures and growth parameters of the Qdisks, a high internal quantum efficiency (IQE) of the AlGaN Qdisk nanorods of up to 77% was obtained at 305 nm, which also exhibited a shift in the small emission wavelength peak with respect to the increasing temperatures during the PL measurements.

7.
J Vet Med Sci ; 83(12): 1965-1976, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34719607

ABSTRACT

Myocardial ischemia-reperfusion injury (IRI) is one of the most leading concerns for public health globally. Diazepam, a local anesthetic, has been reported for its cardioprotective potential. The present investigation aimed to evaluate the possible mechanism of action of diazepam against left anterior descending ligation-induced myocardial IRI in experimental rats. IRI was induced in healthy male rats by ligating coronary artery for 30 min and then reperfused for 60 min. The animals were pre-treated with either vehicle or diltiazem (10 mg/kg) or diazepam (1, 2.5, and 5 mg/kg) for 14 days. Compared to the IRI group, diazepam (2.5 and 5 mg/kg) markedly (P<0.05) attenuated IRI-induced alterations in cardiac function and oxido-nitrosative stress. In addition, diazepam prominently (P<0.05) improved cardiac Na+K+ATPase, Ca2+ATPase levels and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expression. It also significantly (P<0.05) down-regulated cardiac mRNA expressions of cardiac troponin I (cTn-I), C-C chemokine receptor type 2 (CCR2), tumor necrosis factor-alpha (TNF-α), interleukins (IL)-1ß, and IL-6. In western blot analysis, IRI-induced myocardial apoptosis was reduced by diazepam treatment reflected by a marked (P<0.05) decreased in Bcl-2-associated X protein (Bax) and Caspase-3 protein expression. Diazepam also efficiently (P<0.05) improved IRI-induced histological aberration in cardiac tissue. In conclusion, diazepam exerts cardioprotective effect by inhibiting inflammatory release (CCR2, TNF-α, and ILs), oxido-nitrosative stress, and apoptosis (Bax and Caspase-3) pathway during myocardial IRI in experimental rats.


Subject(s)
Diazepam , Myocardial Reperfusion Injury , Animals , Apoptosis , Caspase 3/genetics , Diazepam/pharmacology , Interleukin-1beta , Interleukin-6 , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Rats , Receptors, CCR2 , Tumor Necrosis Factor-alpha/genetics , bcl-2-Associated X Protein
8.
Opt Lett ; 46(21): 5356-5359, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34724474

ABSTRACT

A hybrid patterned sapphire substrate (HPSS) aiming to achieve high-quality Al(Ga)N epilayers for the development of GaN-based ultraviolet light-emitting diodes (UV LEDs) has been prepared. The high-resolution X-ray diffraction measurements reveal that the Al(Ga)N epilayers grown on a HPSS and conventional patterned sapphire substrate (CPSS) have similar structural quality. More importantly, benefiting from the larger refractive index contrast between the patterned silica array and sapphire, the photons can escape from the hybrid substrate with an improved transmittance in the UV band. As a result, in comparison with the UV LEDs grown on the CPSS, the LEDs grown on the HPSS exhibit a significantly enhanced light output power by 14.5% and more than 22.9% higher peak external quantum efficiency, owing to the boost of the light extraction efficiency from the adoption of the HPSS which can be used as a promising substrate to realize high-efficiency and high-power UV LEDs of the future.

9.
Opt Lett ; 46(19): 4809-4812, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598205

ABSTRACT

In this Letter, we perform a comprehensive investigation on the optical characterization of micro-sized deep-ultraviolet (DUV) LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the design of chip sidewall angle. We found that the micro-LEDs with a smaller inclined chip sidewall angle (∼33∘) have improved external quantum efficiency (EQE) performance 19% more than that of the micro-LEDs with a larger angle (∼75∘). Most importantly, the EQE improvement by adopting an inclined sidewall can be more outstanding as the diameter of the LED chip reduces from 40 to 20 µm. The enhanced EQE of the micro-LEDs with smaller inclined chip sidewall angles can be attributed to the stronger reflection of the inclined sidewall, leading to enhanced light extraction efficiency (LEE). In the end, the numerical optical modeling further reveals and verifies the impact of the sidewall angles on the LEE of the micro-LEDs, corroborating our experiment results. This Letter provides a fundamental understanding of the light extraction behavior with optimized chip geometry to design and fabricate highly efficient micro-LEDs in a DUV spectrum of the future.

10.
ACS Nano ; 15(4): 7318-7327, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33784808

ABSTRACT

The solid-solid conversion of Li2S2 to Li2S is a crucial and rate-controlling step that provides one-half of the theoretical capacity of lithium-sulfur (Li-S) batteries. The catalysts in the Li-S batteries are often useless in the solid-solid conversion due to the poor contact interfaces between solid catalysts and insoluble solid Li2S2. Considering that ultrafine nanostructured materials have the properties of quantum size effects and unconventional reactivities, we design and synthesize for the pomegranate-like sulfur nanoclusters@nitrogen-doped carbon@nitrogen-doped carbon nanospheres (S@N-C@N-C NSs) with a seed-pulp-peel nanostructure. The ultrafine S@N-C subunits (diameter ≈5 nm) and effects of a spatial structure perfectly realize the rapid conversion of ultrafine Li2S2 to Li2S. The S@N-C@N-C seed-pulp-peel NS cathodes exhibit excellent sulfur utilization, superb rate performance (760 mAh g-1 at 10.0 C), and an ultralow capacity decay rate of about 0.016% per cycle over 1000 cycles at 4.0 C. The proposed strategy based on ultrafine nanostructured materials can also inform material engineering in related energy storage and conversion fields.

11.
Nanoscale ; 12(30): 16201-16207, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32705100

ABSTRACT

Host materials that can physically confine and chemically adsorb/catalyze lithium polysulfides (LiPSs) are currently receiving intensive research interest for developing lithium-sulfur (Li-S) batteries. Herein, a novel host material made of micro-mesoporous carbon nanospheres (MMC NSs) with well-dispersed ultrafine NiS2-ZnS (uNiS2-ZnS) heterostructures is synthesized for the first time via a simple in situ sulfuration process. The uNiS2-ZnS/MMC materials achieve the synergistic effect of physical confinement and the efficient chemical adsorption/catalysis of LiPSs through a micro-mesoporous structure and well-dispersed uNiS2-ZnS heterostructures. In addition, compared with bulk heterostructured materials, the uNiS2-ZnS heterostructures greatly enhance the adsorption and catalytic ability toward LiPSs because the catalysis interface effect and naturally formed in-plane interfaces can be magnified by the ultrafine dispersed nanoparticles. As a result, the prepared uNiS2-ZnS/MMC-S cathodes exhibit outstanding rate capacity (675.5 mA h g-1 at 5.0C) and cyclic stability (710.5 mA h g-1 at 1.0C after 1000 cycles with a low capacity decay of 0.033% per cycle). This work provides a certain reference for the application of heterostructured materials in Li-S batteries.

12.
Exp Ther Med ; 15(6): 5537-5543, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29904433

ABSTRACT

Total knee arthroplasty (TKA) is highly associated with post-operative pain. The present randomized trial aimed to explore the possible post-operative pain management by a different combination of analgesics or opioids (ketamine and bupivacaine) following TKA. A total of 84 patients were randomly divided into four groups. All subjects were anesthetized for TKA surgery and received post-operative pain management via intra-articular saline (control group; n=23), ketamine (2 mg/kg) infused with saline (ket group; n=21) bupivacaine (0.5 mg/kg) infused with saline (bupi group; n=20) or ketamine (2 mg/kg)+bupivacaine (0.5 mg/kg) infused with saline (ket+bupi group; n=20) at the end of the surgery. Additional, post-operative analgesia was infused with the aid of patient-controlled analgesia with morphine. A reduction in the levels of pain score (verbal rating scale and visual analog scale), opioid consumption, time of ambulation, hospital stay and adverse events were observed in the ket+bupi group compared with the other groups. Meanwhile, the satisfaction score and knee flexion degree were improved following treatment with the ket+bupi regimen. Therefore, the multimodal analgesic regimen (ket+bupi) may be useful in mitigating post-operative pain as and improving knee mobilization following TKA.

SELECTION OF CITATIONS
SEARCH DETAIL
...