Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 106-109, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38404284

ABSTRACT

At present, the major public health challenges caused by novel coronavirus infection have gradually subside. However, a large number of people are still suffering from long-novel coronavirus syndrome or post-novel coronavirus syndrome. The clinical manifestations of long coronavirus syndrome are related to multiple systems, such as respiratory, circulatory, nervous, digestive and musculoskeletal systems, with various long-term persistent symptoms after novel coronavirus infection. At the same time, the infection of the novel coronavirus is an important cause of frailty and sarcopenia in the elderly population. However, at present, the scholars have not paid enough attention to the skeletal muscle weakness caused by the novel coronavirus. Therefore, this paper focuses on the long-novel coronavirus syndrome and sarcopenia to explore the pathological mechanism of skeletal muscle attenuation caused by the SARS-CoV-2 mediated "cytokine storm", mitochondrial damage, hypoxia state and other links,so as to raise the attention of clinical and academic researchers and improve the clinical strategy of frailty and sarcopenia after novel coronavirus infection.


Subject(s)
COVID-19 , Frailty , Sarcopenia , Aged , Humans , SARS-CoV-2 , Muscle, Skeletal
2.
Ther Adv Respir Dis ; 17: 17534666231170800, 2023.
Article in English | MEDLINE | ID: mdl-37154390

ABSTRACT

Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Quercetin/adverse effects , Antioxidants/adverse effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Oxidative Stress
3.
Ann Transl Med ; 10(20): 1142, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36388790

ABSTRACT

Background and Objective: Aging refers to a progressive decrease in functional performance, leading to increased mortality risk. At present, life expectancy is increasing worldwide and is expected to exceed 80 years by 2040. However, this increase in life expectancy also indicates a rise in the incidence and prevalence of diseases, such as cardiovascular, neurological, musculoskeletal, and oncological diseases, which are associated with aging. The exact underlying mechanisms of aging remain unknown, and whether it is a programmed process or the consequence of an accumulation of stress events remains unclear. Thus, more scientific research is needed to improve the management of complex and frail patients. Methods: Several databases were searched with the following key words: immunosenescence, inflamm-aging, frailty, sarcopenia and skeletal muscle, etc. Key Content and Findings: Skeletal muscle is the core phenotype of frailty and sarcopenia. Immune aging and skeletal muscle decline interplay with each other and form a vicious circle. Maintaining muscle health is beneficial for immune function and delays the onset of frailty. Particularly, in the context of the ongoing corona virus disease (COVID)-19 pandemic, studies have shown that the elderly are more prone to the consequences of the SARS-CoV-2 virus. It has been reported that the rates of hospitalization in the 65-74, 75-84, and ≥85 years old group were 5×, 8×, and 10× greater than the 18-29 years old group, with corresponding COVID-19-related deaths being 60×, 140×, and 330× that of the younger reference group, respectively. Considering the above, this review aims to discuss the relationship between immunosenescence, skeletal muscle, and frailty, and to explore immunosenescence as a potential therapeutic target to prevent frailty and extend healthspan, with some emphasis on the effects of the COVID-19 pandemic on the elderly. Conclusions: Immunosenescence is a promising potential therapeutic target for frailty and is worthy of further investigation.

4.
Biomolecules ; 12(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36358997

ABSTRACT

Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Apoptosis , Molecular Targeted Therapy , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm
5.
Front Pharmacol ; 13: 1024439, 2022.
Article in English | MEDLINE | ID: mdl-36313310

ABSTRACT

Stroke is a fatal neurological disease, which seriously threatens human health and life. Ischemic stroke (IS) is the most common type of stroke in clinic. Its pathogenesis is very complex, mainly caused by nerve damage caused by brain blood supply disorder. Previous studies have confirmed that natural products play important roles in improving neurological disorders. Furthermore, our previous results also suggested that Shenxiong Tongmai granule, a clinically used herbal medicines' prescription, has a good ameliorating effect on IS. In the present study, we found that Monomethyl lithospermate (MOL), a constituent of Shenxiong Tongmai granule, significantly improved the neurological damage in middle cerebral artery occlusion (MCAO) rats. MOL can significantly improve the neurological deficit score of MCAO rats, and improve the damage of hippocampal neurons caused by ischemia-reperfusion (IR). At the same time, we also found that MOL could reduce the level of oxidative stress in the brain tissues of MCAO rats. Furthermore, the oxygen and glucose deprivation/Reoxygenation (OGD/R)-induced SHSY-5Y cell model was established in vitro to investigate the pharmacological activity and molecular mechanisms of MOL in improving the nerve injury of IS rats. The results showed that MOL could increase the cell viability of SHSY-5Y cells, inhibit the mitochondrial membrane potential (MMOP) collapse and suppress apoptosis. In addition, MOL also ameliorated the elevated oxidative stress level caused by OGR/R treatment in SHSY-5Y cells. Further mechanistic studies showed that MOL could activate the PI3K/AKT pathway via promoting the phosphorylation of PI3K and AKT in MCAO rats and OGR/R-induced SHSY-5Y cells, which could be partially blocked by addition of PI3K/AKT pathway inhibitor of LY294002. Taken together, our current study suggested that MOL exerts a protective effect against neural damage caused by IS in vivo and in vitro by activating the PI3K/AKT pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...