Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(44): 23948-23962, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37886816

ABSTRACT

Assembling macroscopic helices with controllable chirality and understanding their formation mechanism are highly desirable but challenging tasks for artificial systems, especially coordination polymers. Here, we utilize solvents as an effective tool to induce the formation of macroscopic helices of chiral coordination polymers (CPs) and manipulate their helical sense. We chose the Ni/R-,S-BrpempH2 system with a one-dimensional tubular structure, where R-,S-BrpempH2 stands for R-,S-(1-(4-bromophenyl)ethylaminomethylphosphonic acid). The morphology of the self-assemblies can be controlled by varying the cosolvent in water, resulting in the formation of twisted ribbons of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-2T) in pure H2O; needle-like crystals of R-,S-Ni(Brpemp)(H2O)2·1/3CH3CN (R-,S-1C) in 20 vol % CH3CN/H2O; nanofibers of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-3F) in 20-40 vol % methanol/H2O or ethanol/H2O; and superhelices of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-4H or 5H) in 40 vol % propanol/H2O. Interestingly, the helicity of the superhelix can be controlled by using a propanol isomer in water. For the Ni/R-BrpempH2 system, a left-handed superhelix of R-4H(M) was obtained in 40 vol % NPA/H2O, while a right-handed superhelix of R-5H(P) was isolated in 40 vol % IPA/H2O. These results were rationalized by theoretical calculations. Adsorption studies revealed the chiral recognition behavior of these compounds. This work may contribute to the development of chiral CPs with a macroscopic helical morphology and interesting functionalities.

2.
Chem Sci ; 14(39): 10892-10901, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37829014

ABSTRACT

Inspired by natural biological systems, chiral or handedness inversion by altering external and internal conditions to influence intermolecular interactions is an attractive topic for regulating chiral self-assembled materials. For coordination polymers, the regulation of their helical handedness remains little reported compared to polymers and supramolecules. In this work, we choose the chiral ligands R-pempH2 (pempH2 = (1-phenylethylamino)methylphosphonic acid) and R-XpempH2 (X = F, Cl, Br) as the second ligand, which can introduce C-H⋯π and C-H⋯X interactions, doped into the reaction system of the Tb(R-cyampH)3·3H2O (cyampH2 = (1-cyclohexylethylamino)methylphosphonic acid) coordination polymer, which itself can form a right-handed superhelix by van der Waals forces, and a series of superhelices R-1H-x, R-2F-x, R-3Cl-x, and R-4Br-x with different doping ratios x were obtained, whose handedness is related to the second ligand and its doping ratio, indicating the decisive role of interchain interactions of different strengths in the helical handedness. This study could provide a new pathway for the design and self-assembly of chiral materials with controllable handedness and help the further understanding of the mechanism of self-assembly of coordination polymers forming macroscopic helical systems.

3.
Chemistry ; 27(67): 16722-16734, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34632663

ABSTRACT

Helical architectures with controllable helical sense bias have recently attracted considerable interest for mimicking biological helices and developing novel chiral materials. Coordination polymers (CPs), composed of metal ion nodes and organic linkers, are intriguing systems showing tunable structures and functions. However, CPs with helical morphologies have rarely been explored so far. Particularly, chirality inversion through external stimulus has not been achieved in helical CPs. In this work, we carried out an in-depth investigation on the self-assembly of 1D gadolinium(III) phosphonate CPs using GdX3 (X=Cl, Br, I) and Gd(RSO3 ) (R=CH3 , C6 H5 , CF3 ) as metal sources and R-(1-phenylethylamino)methyl phosphonic acid (R-pempH2 ) as ligand. Superhelices were formed by precise control of the interchain interactions through different intercalated anions. Furthermore, the twisting direction of superhelices could be controlled by synergistic effect of anions and pH. This study may provide a new route to fabricate helical nanostructures of CPs with a desirable chiral sense and help understand the inner mechanism of the self-assembly process of macroscopic helical structures of molecular systems.


Subject(s)
Nanostructures , Polymers , Anions , Hydrogen-Ion Concentration , Stereoisomerism
4.
J Am Chem Soc ; 143(42): 17587-17598, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34644503

ABSTRACT

Nanotubular materials have garnered considerable attention since the discovery of carbon nanotubes. Although the layer-to-tube rolling up mechanism has been well recognized in explaining the formation of many inorganic nanotubes, it has not been generally applied to coordination polymers (CPs). To uncover the key factors that determine the rolling-up of layered CPs, we have chosen the Co/R-, S-Xpemp [Xpemp = (4-X-1-phenylethylamino)methylphosphonic acid, X = H, F, Cl, Br] systems and study how the weak interactions influence the formation of layered or tubular structures. Four pairs of homochiral isostructural compounds R-, S-Co(Xpemp)(H2O)2 [X = H (1H), F (2F), Cl (3Cl), Br (4Br)] were obtained with tubular structures. The inclusion of 3,3'-azobipyridine (ABP) guest molecules led to compounds R-, S-[Co(Xpemp)(H2O)2]4·ABP·H2O with layered structures when X was Cl (5Cl) and Br (6Br), but tubular compounds 1H and 2F when X was H and F. Layered structures were also obtained for racemic compounds meso-Co(Xpemp)(H2O)2 [X = F (7F), Cl (8Cl), Br (9Br)] using racemic XpempH2 as the reaction precursor, but not when X = H. A detailed study on R-6Br revealed that layer-to-tube transformation occurred upon removal of ABP under hydrothermal conditions, forming R-4Br with a tubular structure. Similar layer-to-tube conversion did not occur in organic solvents. The results demonstrate that weak interlayer interactions are a prerequisite but not sufficient for the rolling-up of the layers. In the present cases, water also provides a driving force in the layer-to-tube transformation. The experimental results were rationalized by theoretical calculations.

5.
Chem Sci ; 12(38): 12619-12630, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703547

ABSTRACT

Chiral transcription from the molecular level to the macroscopic level by self-organization has been a topic of considerable interest for mimicking biological systems. Homochiral coordination polymers (CPs) are intriguing systems that can be applied in the construction of artificial helical architectures, but they have scarcely been explored to date. Herein, we propose a new strategy for the generation of superhelices of 1D CPs by introducing flexible cyclohexyl groups on the side chains to simultaneously induce interchain van der Waals interactions and chain misalignment due to conformer interconversion. Superhelices of S- or R-Tb(cyampH)3·3H2O (S-1H, R-1H) [cyampH2 = S- or R-(1-cyclohexylethyl)aminomethylphosphonic acid] were obtained successfully, the formation of which was found to follow a new type of "chain-twist-growth" mechanism that had not been described previously. The design strategy used in this work may open a new and general route to the hierarchical assembly and synthesis of helical CP materials.

6.
Chem Asian J ; 16(11): 1456-1465, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33861508

ABSTRACT

Metal-organic frameworks containing responsive organic linkers are attractive for potential applications in sensors and molecular devices. Herein we report three cobalt(II) phosphonates incorporating responsive dianthracene linkers, namely, Co2 (amp2 H2 )2 (H2 O)4 ⋅ 6H2 O (MDAF-1), Co2 (amp2 )(H2 O)4 ⋅ 2H2 O (MDAF-2) and Co(amp2 H2 ) ⋅ 2H2 O ⋅ 0.5DMF (MDAF-3), where amp2 H4 is pre-photodimerized 9-anthrylmethylphosphonic acid. MDAF-1 shows a layer structure in which dinuclear Co2 (PO3 H)2 units are inter-connected by dianthracene ligands. In MDAF-2 and MDAF-3, inorganic chains of corner-sharing {CoO4 } (or {CoO6 }) and {PO3 C} are cross-linked by dianthracene ligands into 3D frameworks. All compounds underwent thermo-induced phase transitions, first the de-solvation and then the de-dimerization of dianthracene (as well as the release of the remaining solvent molecules for MDAF-2 and -3), associated with magnetic changes. MDAF-1 can be exfoliated into single-layer nanosheets in water which show light-triggered luminescent changes.

7.
Chem Sci ; 12(3): 929-937, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-34163859

ABSTRACT

Artificial smart materials with switchable multifunctionality are of immense interest owing to their wide application in sensors, displays and memory devices. Lanthanide complexes are promising multifunctional materials integrating optical and magnetic characteristics. However, synergistic manipulation of different physical properties in lanthanide systems is still challenging. Herein we designed and synthesized a mononuclear complex [DyIII(SCN)3(depma)2(4-hpy)2] (1), which incorporates 9-diethylphosphonomethylanthracene (depma) as a photo-active component and 4-hydroxypyridine (4-hpy) as a polar component. This compound shows several unusual features: (a) reversible thermo-responsive phase transition associated with the order-disorder transition of 4-hpy and SCN-, which leads to thermochromic behavior and dielectric anomaly; (b) reversible photo-induced dimerization of anthracene groups, which leads to synergistic switching of luminescence, magnetic and dielectric properties. To our knowledge, compound 1 is the first example of lanthanide complexes that show stimuli-triggered synergistic and reversible switching of luminescence, magnetic and dielectric properties.

8.
Dalton Trans ; 48(36): 13769-13779, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31482159

ABSTRACT

Systematic control of the intermolecular pair-wise [4 + 4] photocycloaddition of a series of dysprosium phosphonates through fine-tuning of two different phosphonate ligands, one with a bidentate blocker and one with an anthracene antenna, both with alkyl substituents, reveals a size dependent rate. With bulky isopropyl on the diphosphonate blocker little response to UV light is observed. In contrast, compounds with ethyl which has less steric hindrance exhibit almost complete photocycloaddition. Interestingly, the alkyl substituents attached to anthracene monophosphonate have no evident effect on the reaction rate. Although no direct relationship can be found between the substitutions and the observed differences in field-induced single molecule magnetism, remarkable changes in magnetic dynamics are observed for complexes before and after the complete photocycloaddition reactions.

9.
Chem Commun (Camb) ; 55(19): 2825-2828, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30766989

ABSTRACT

Homochiral iron(ii)-based nanotubular metal phosphonates (R)- and (S)-[Fe(pemp)(H2O)2] [pemp2- = (R)- or (S)-(1-phenylethylamino)methylphosphonate] are reported showing metamagnetism at low temperature. The dehydrated product features coordinatively unsaturated and redox-active metal ion sites that enable it to strongly bind nitric oxide at room temperature.

10.
RSC Adv ; 9(55): 31911-31917, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530765

ABSTRACT

Hydrothermal reactions of the multitopic ligand 1-hydroxy-1-(piperidin-4-yl)methylidenebisphosphonic acid (hpdpH4) with cobalt or nickel sulfates afforded two new isostructural metal phosphonates, M3 II(hpdpH)2(H2O)6·4H2O [M = Co (Co-10H2O), Ni (Ni-10H2O)]. Their structures consist of parallel diamond chains of three MO6 octahedra bridged by the PO3C tetrahedra. Six of the seven oxygen atoms of the ligand are involved in coordination; for two ligands that amounts to 12 bonds for 3 MO6 and the remaining six are occupied by terminal water molecules. In addition, four water molecules sit in between the chains providing H-bonds to the formation of a 3D-net. Thermal analyses show identical two-step dehydration processes involving first the departure of six water molecules followed by the remaining four. A detailed study of the ac- and dc-magnetization as a function of temperature, field and frequency reveals associated drastic changes. The virgin form Co-10H2O is a paramagnet while its partial dehydrated form Co-4H2O is an antiferromagnet displaying canting below T N = 4.7 K and the fully dehydrated form Co is a ferrimagnet (T C = 12 K). Ni-10H2O and Ni-4H2O exhibit long-range ordered antiferromagnetism (T N = 2.7 and 4.0 K, respectively) and also become ferrimagnets (T C = 9.4 K) when fully dehydrated to Ni. The dehydrated samples can be fully rehydrated with the complete recovery of both the structures and magnetic properties.

11.
International Eye Science ; (12): 1975-1977, 2014.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-637077

ABSTRACT

Long-term use of systemic or topical glucocorticoid can cause posterior subcapsular opacities ( PSO ) , named glucocorticoid-induced cataract ( GIC ) . There are many hypotheses on the pathogenesis of GIC. However, no one has well explained the formation of PSO, which leads to no effective approaches in the prevention and/or treatment. A new opinion is that hormones might affect lens epithelial cells through GR - mediated vimentin changes, which eventually result in the formation of GIC. Therefore, the association between vimentin and lens epithelial cell proliferation and differentiation, maybe a new direction for further studies in the pathogenesis of GIC.

SELECTION OF CITATIONS
SEARCH DETAIL
...