Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673078

ABSTRACT

Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 µm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.

2.
Nat Commun ; 15(1): 55, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168081

ABSTRACT

Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 µs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

3.
Life Sci ; 338: 122394, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38159593

ABSTRACT

Colorectal cancer (CRC) is the second most fatal cancer. Many studies have shown that cancer stemness contributes to resistance to conventional chemotherapy and poor prognosis. However, the mechanisms involved in maintaining cancer stemness in CRC are still obscure and few clinical drugs were used to target cancer stemness. Previous studies had reported CD95 increases the stemness of cancer cells with long-term stimulation of exogenous agonist CD95 ligand (CD95L). However, the expression of CD95L is relative low in certain human tumor tissues. In this study, we found that CD95 was highly expressed in CRC cells, and in vitro it promoted the tumorsphere formation, chemotherapy resistance and in vivo tumor growth without stimulation of exogenous CD95L. Mechanistically, the bulk and single-cell RNA-sequencing results suggested that CD95 promotes stemness of CRC cells through upregulation of long non-coding RNAs metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). MALAT1 knockdown inhibited CD95-induced tumorsphere formation and chemotherapy resistance. In summary, our findings reveal that CD95 has the capability to modulate cancer stemness via the action of the lncRNA MALAT1. Targeting CD95 may be a promising strategy to inhibit cancer stemness in CRC.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Fas Ligand Protein , RNA, Long Noncoding/metabolism
4.
Int J Biol Macromol ; 253(Pt 1): 126727, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673159

ABSTRACT

Thanks to their outstanding mechanical properties and corrosion resistance in physiological environments, titanium and its alloys are broadly explored in the field of intravascular devices. However, the biocompatibility is insufficient, causing thrombus formation and even implantation failure. In this study, inspired by the functions of endothelial glycocalyx and the NO-releasing of endothelial cells (ECs), a biomimetic coating (TNTA-Se) with three-dimensional gel-like structures and NO-catalytically generating ability was constructed on the titanium surface. To this end, the titanium alloy was firstly anodized and then annealed to form nanotube structures imitating the three-dimensional villous of glycocalyx, followed by the preparation of the Cu2+-loaded polydopamine intermediate layer for the immobilization of carboxymethyl chitosan and sodium alginate to form the hydrogel structure. Finally, an organoselenium compound (selenocystamine) as an active catalyst was covalently immobilized on the surface to develop a bioactive coating mimicking endothelial function with NO-generating activity. The surface morphologies and chemical structures of the biomimetic coating were characterized by scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the results indicated that the NO-catalytically generating hydrogel coating was successfully constructed. The results of water contact angle and protein adsorption suggested that the TNTA-Se coating exhibited excellent hydrophilicity, the promotion of bovine serum albumin (BSA) adsorption while the inhibition of fibrinogen (FIB) adsorption. Upon the addition of NO donor S-nitroso glutathione (GSNO) and reducing agent glutathione (GSH), the surface (TNTA-NO) displayed excellent blood compatibility and cytocompatibility to ECs. Compared with other surfaces, the TNTA-NO coating can not only further promote BSA adsorption and inhibit the adhesion and activation of platelets as well as hemolysis, but also significantly enhance ECs adhesion and proliferation and up-regulate VEGF and NO expression of ECs. The current study demonstrated that the NO-catalytically generating hydrogel coating on the titanium alloy can mimic the glycocalyx structure and endothelium function to catalyze a large number of NO donors in human blood to produce NO, and thus simultaneously enhance the surface hemocompatibility and endothelialization, representing a promising strategy for long-term cardiovascular implants of titanium-based devices.


Subject(s)
Chitosan , Endothelial Cells , Humans , Nitric Oxide , Hydrogels/pharmacology , Titanium , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Serum Albumin, Bovine , Endothelium , Alloys/chemistry , Glutathione , Surface Properties
5.
Cardiovasc Res ; 119(11): 2142-2156, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37201513

ABSTRACT

AIMS: Accumulating evidence supports the indispensable role of protein arginine methyltransferase 5 (PRMT5) in the pathological progression of several human cancers. As an important enzyme-regulating protein methylation, how PRMT5 participates in vascular remodelling remains unknown. The aim of this study was to investigate the role and underlying mechanism of PRMT5 in neointimal formation and to evaluate its potential as an effective therapeutic target for the condition. METHODS AND RESULTS: Aberrant PRMT5 overexpression was positively correlated with clinical carotid arterial stenosis. Vascular smooth muscle cell (SMC)-specific PRMT5 knockout inhibited intimal hyperplasia with an enhanced expression of contractile markers in mice. Conversely, PRMT5 overexpression inhibited SMC contractile markers and promoted intimal hyperplasia. Furthermore, we showed that PRMT5 promoted SMC phenotypic switching by stabilizing Kruppel-like factor 4 (KLF4). Mechanistically, PRMT5-mediated KLF4 methylation inhibited ubiquitin-dependent proteolysis of KLF4, leading to a disruption of myocardin (MYOCD)-serum response factor (SRF) interaction and MYOCD-SRF-mediated the transcription of SMC contractile markers. CONCLUSION: Our data demonstrated that PRMT5 critically mediated vascular remodelling by promoting KLF4-mediated SMC phenotypic conversion and consequently the progression of intimal hyperplasia. Therefore, PRMT5 may represent a potential therapeutic target for intimal hyperplasia-associated vascular diseases.


Subject(s)
Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Animals , Humans , Mice , Arginine , Hyperplasia/metabolism , Kruppel-Like Transcription Factors/genetics , Methylation , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/pharmacology , Vascular Remodeling
6.
Res Sq ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798249

ABSTRACT

Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose a novel approach to demonstrate the first turnkey Brillouin-DKS frequency comb. Our approach with a Chimera cavity offers essential benefits that are not attainable previously, including phase insensitivity, self-healing capability, deterministic selection of DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 µs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

7.
Front Plant Sci ; 13: 986414, 2022.
Article in English | MEDLINE | ID: mdl-36388571

ABSTRACT

Roots are important plant organs for the uptake of water and nutrient elements. Plant root development is finely regulated by endogenous signals and environmental cues, which shapes the root system architecture to optimize the plant growth and adapt to the rhizospheric environments. Carotenoids are precursors of plant hormones strigolactones (SLs) and ABA, as well as multiple bioactive molecules. Numerous studies have demonstrated SLs and ABA as essential regulators of plant root growth and development. In addition, a lot carotenoid-derived bioactive metabolites are recently identified as plant root growth regulators, such as anchorene, ß-cyclocitral, retinal and zaxinone. However, our knowledge on how these metabolites affect the root architecture to cope with various stressors and how they interact with each other during these processes is still quite limited. In the present review, we will briefly introduce the biosynthesis of carotenoid-derived root regulators and elaborate their biological functions on root development and architecture, focusing on their contribution to the rhizospheric environmental adaption of plants.

8.
Light Sci Appl ; 11(1): 296, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224184

ABSTRACT

Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton's cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

9.
Nat Commun ; 13(1): 6395, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36302919

ABSTRACT

Dissipative Kerr soliton (DKS) frequency combs-also known as microcombs-have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only adds new degrees of freedom to ultrafast laser technology, but also provides new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry-Pérot (FP) mesoresonator based on graded index multimode fiber (GRIN-MMF). Complementing the two-step pumping scheme with a cavity stress tuning method, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond (averaging times up to 25 µs) represent improvements of 25× and 2.5×, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP mesoresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

10.
Methods Enzymol ; 674: 481-495, 2022.
Article in English | MEDLINE | ID: mdl-36008017

ABSTRACT

Apocarotenoids are bioactive metabolites found in animals, fungi and plants. Several carotenoid-derived compounds, apocarotenoids, were recently identified as new growth regulators in different plant species. Here, we introduce basic chemical screening methods, using a model plant, Arabidopsis thaliana, to elucidate the function of bioactive apocarotenoids in determining plant phenotypic traits. These short guidelines include essential practices, such as selecting the plant growth conditions and the type of treatment, as well as phenotyping methodologies for the initial screening of novel apocarotenoid plant growth regulators.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Carotenoids/metabolism , Fungi/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plants/metabolism
11.
Front Plant Sci ; 13: 840397, 2022.
Article in English | MEDLINE | ID: mdl-35574065

ABSTRACT

Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most devastating diseases in cotton (Gossypium spp.). Lignin in the cell wall forms a physical barrier to inhibit pathogen invasion, and defense-induced lignification reinforces secondary cell wall to prevent pathogens from further spreading. Cinnamyl alcohol dehydrogenases (CADs) catalyze the production of three main monolignols, p-coumaryl- (H), coniferyl- (G), and sinapyl-alcohols (S), which are the fundamental blocks of lignin. Here, we identified CAD genes in G. hirsutum, analyzed their expression profiles in cotton leaf, stem, and root from different developmental stages, and selected GhCAD35, GhCAD45, and GhCAD43, which were consistently induced by V. dahliae inoculation in G. hirsutum cultivars resistant or susceptible to V. dahliae. On the basis of confirmation of the in vitro enzymatic activity of the three proteins in generation of the three monolignols, we used virus-induced gene silencing (VIGS) to investigate the effects of silencing of GhCAD35, GhCAD45, or GhCAD43 on resistance to V. dahliae as well as on deposition and the composition of lignin. Silencing each of the three CADs impaired the defense-induced lignification and salicylic acid biosynthesis in stem, and compromised resistance to V. dahliae. Moreover, our study showed that silencing the three GhCADs severely affected the biosynthesis of S-lignin, leading to a decrease of the syringyl/guaiacyl (S/G) ratio. Heterogeneous overexpression of GhCAD35, GhCAD45, or GhCAD43 in Arabidopsis enhanced disease resistance. Taken together, our study demonstrates a role of the three GhCADs in defense-induced lignin biosynthesis and resistance to V. dahliae in G. hirsutum.

12.
Cell Death Dis ; 13(4): 299, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379776

ABSTRACT

A high plasma level of the choline-derived metabolite trimethylamine N-oxide (TMAO) is closely related to the development of cardiovascular disease. However, the underlying mechanism remains unclear. In the present study, we demonstrated that a positive correlation of protein arginine methyltransferase 5 (PRMT5) expression and TMAO-induced vascular inflammation, with upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in primary rat and human vascular smooth muscle cells (VSMC) in vitro. Knockdown of PRMT5 suppressed VCAM-1 expression and the adhesion of primary bone marrow-derived macrophages to TMAO-stimulated VSMC. VSMC-specific PRMT5 knockout inhibited vascular inflammation with decreased expression of VCAM-1 in mice. We further identified that PRMT5 promoted VCAM-1 expression via symmetrical demethylation of Nuclear factor-κB p65 on arginine 30 (R30). Finally, we found that TMAO markedly induced the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) and production of reactive oxygen species, which contributed to PRMT5 expression and subsequent VCAM-1 expression. Collectively, our data provide novel evidence to establish a Nox4-PRMT5-VCAM-1 in mediating TMAO-induced VSMC inflammation. PRMT5 may be a potential target for the treatment of TMAO-induced vascular diseases.


Subject(s)
Muscle, Smooth, Vascular , Vascular Cell Adhesion Molecule-1 , Animals , Inflammation/genetics , Inflammation/metabolism , Methylamines/metabolism , Methylamines/pharmacology , Mice , Muscle, Smooth, Vascular/metabolism , Rats , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
13.
Mol Plant ; 15(1): 151-166, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34547513

ABSTRACT

Abscisic acid (ABA) is an important carotenoid-derived phytohormone that plays essential roles in plant response to biotic and abiotic stresses as well as in various physiological and developmental processes. In Arabidopsis, ABA biosynthesis starts with the epoxidation of zeaxanthin by the ABA DEFICIENT 1 (ABA1) enzyme, leading to epoxycarotenoids; e.g., violaxanthin. The oxidative cleavage of 9-cis-epoxycarotenoids, a key regulatory step catalyzed by 9-CIS-EPOXYCAROTENOID DIOXYGENASE, forms xanthoxin, which is converted in further reactions mediated by ABA DEFICIENT 2 (ABA2), ABA DEFICIENT 3 (ABA3), and ABSCISIC ALDEHYDE OXIDASE 3 (AAO3) into ABA. By combining genetic and biochemical approaches, we unravel here an ABA1-independent ABA biosynthetic pathway starting upstream of zeaxanthin. We identified the carotenoid cleavage products (i.e., apocarotenoids, ß-apo-11-carotenal, 9-cis-ß-apo-11-carotenal, 3-OH-ß-apo-11-carotenal, and 9-cis-3-OH-ß-apo-11-carotenal) as intermediates of this ABA1-independent ABA biosynthetic pathway. Using labeled compounds, we showed that ß-apo-11-carotenal, 9-cis-ß-apo-11-carotenal, and 3-OH-ß-apo-11-carotenal are successively converted into 9-cis-3-OH-ß-apo-11-carotenal, xanthoxin, and finally into ABA in both Arabidopsis and rice. When applied to Arabidopsis, these ß-apo-11-carotenoids exert ABA biological functions, such as maintaining seed dormancy and inducing the expression of ABA-responsive genes. Moreover, the transcriptomic analysis revealed a high overlap of differentially expressed genes regulated by ß-apo-11-carotenoids and ABA, suggesting that ß-apo-11-carotenoids exert ABA-independent regulatory activities. Taken together, our study identifies a biological function for the common plant metabolites, ß-apo-11-carotenoids, extends our knowledge about ABA biosynthesis, and provides new insights into plant apocarotenoid metabolic networks.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Plant/drug effects , Oxidoreductases/genetics , Oxidoreductases/metabolism , Genes, Plant , Genetic Variation , Genotype
14.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34947659

ABSTRACT

The degradation of InSe film and its impact on field effect transistors are investigated. After the exposure to atmospheric environment, 2D InSe flakes produce irreversible degradation that cannot be stopped by the passivation layer of h-BN, causing a rapid decrease for InSe FETs performance, which is attributed to the large number of traps formed by the oxidation of 2D InSe and adsorption to impurities. The residual photoresist in lithography can cause unwanted doping to the material and reduce the performance of the device. To avoid contamination, a high-performance InSe FET is achieved by a using hard shadow mask instead of the lithography process. The high-quality channel surface is manifested by the hysteresis of the transfer characteristic curve. The hysteresis of InSe FET is less than 0.1 V at Vd of 0.2, 0.5, and 1 V. And a high on/off ratio of 1.25 × 108 is achieved, as well relative high Ion of 1.98 × 10-4 A and low SS of 70.4 mV/dec at Vd = 1 V are obtained, demonstrating the potential for InSe high-performance logic device.

15.
Phys Rev Lett ; 127(21): 213902, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860072

ABSTRACT

Monolithic optical parametric oscillators extend laser frequencies in compact architectures, but normally guide and circulate all pump, signal, and idler beams. Critical frequency matching is raised among these resonances, limiting operation stability and continuous tuning. Here, we develop a box resonator geometry that guides all beams but only resonates for signal. Such noncritical frequency matching enables 227 GHz continuous tuning, with sub-10 kHz linewidth and 0.43 W power at 3310 nm. Our results confirm that monolithic resonator can be effectively used as a tunable laser including midinfrared wavelength, as further harnessed with methane fine spectral measurement at MHz accuracy.

17.
Opt Lett ; 46(15): 3769-3772, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329277

ABSTRACT

Single longitudinal mode and single polarization are basic requirements of high performance fiber lasers, while their realizations are nontrivial, owing to the long laser cavity and lack of polarization selection of ordinary optical fibers. Here, we demonstrate an all-fiber narrow-linewidth laser realized on an external high-Q fiber ring, with combined functions of single-longitude-mode selection and linewidth reduction. A single-longitude-mode laser with a high polarization extinction ratio of ∼40dB and low white frequency noise at 0.3Hz2/Hz is achieved, corresponding to a fundamental linewidth of ∼0.92Hz. Using all non-polarization fiber components and ordinary gain fiber, our scheme shows the realization of narrow-linewidth single-polarization fiber lasers in a simple and cost-effective way, promising for broadband applications.

18.
3 Biotech ; 11(5): 249, 2021 May.
Article in English | MEDLINE | ID: mdl-33968592

ABSTRACT

Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the selective oxidative cleavage steps from carotenoids to apocarotenoids, which are essential for the synthesis of biologically important molecules such as retinoids, and the phytohormones abscisic acid (ABA) and strigolactones. In addition, CCDs play important roles in plant biotic and abiotic stress responses. Till now, a comprehensive characterization of the CCD gene family in the economically important crop cotton (Gossypium spp.) is still missing. Here, we performed a genome-wide analysis and identified 33, 31, 16 and 15 CCD genes from two allotetraploid Gossypium species, G. hirsutum and G. barbadense, and two diploid Gossypium species, G. arboreum and G. raimondii, respectively. According to the phylogenetic tree analysis, cotton CCDs are classified as six subgroups including CCD1, CCD4, CCD7, CCD8, nine-cis-epoxycarotenoid dioxygenase (NCED) and zaxinone synthase (ZAS) sub-families. Evolutionary analysis shows that purifying selection dominated the evolution of these genes in G. hirsutum and G. barbadense. Predicted cis-acting elements in 2 kb promoters of CCDs in G. hirsutum are mainly involved in light, stress and hormone responses. The transcriptomic analysis of GhCCDs showed that different GhCCDs displayed diverse expression patterns and were ubiquitously expressed in most tissues; moreover, GhCCDs displayed specific inductions by different abiotic stresses. Quantitative reverse-transcriptional PCR (qRT-PCR) confirmed the induction of GhCCDs by heat stress, salinity, polyethylene glycol (PEG) and ABA application. In summary, the bioinformatics and expression analysis of CCD gene family provide evidence for the involvement in regulating abiotic stresses and useful information for in-depth studies of their biological functions in G. hirsutum. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02805-9.

19.
Plant J ; 107(1): 54-66, 2021 07.
Article in English | MEDLINE | ID: mdl-33837613

ABSTRACT

Carotenoid-derived regulatory metabolites and hormones are generally known to arise through the oxidative cleavage of a single double bond in the carotenoid backbone, which yields mono-carbonyl products called apocarotenoids. However, the extended conjugated double bond system of these pigments predestines them also to repeated cleavage forming dialdehyde products, diapocarotenoids, which have been less investigated due to their instability and low abundance. Recently, we reported on the short diapocarotenoid anchorene as an endogenous Arabidopsis metabolite and specific signaling molecule that promotes anchor root formation. In this work, we investigated the biological activity of a synthetic isomer of anchorene, iso-anchorene, which can be derived from repeated carotenoid cleavage. We show that iso-anchorene is a growth inhibitor that specifically inhibits primary root growth by reducing cell division rates in the root apical meristem. Using auxin efflux transporter marker lines, we also show that the effect of iso-anchorene on primary root growth involves the modulation of auxin homeostasis. Moreover, by using liquid chromatography-mass spectrometry analysis, we demonstrate that iso-anchorene is a natural Arabidopsis metabolite. Chemical inhibition of carotenoid biosynthesis led to a significant decrease in the iso-anchorene level, indicating that it originates from this metabolic pathway. Taken together, our results reveal a novel carotenoid-derived regulatory metabolite with a specific biological function that affects root growth, manifesting the biological importance of diapocarotenoids.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Meristem/cytology , Meristem/drug effects , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plants, Genetically Modified
20.
Opt Lett ; 46(6): 1397-1400, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720196

ABSTRACT

Narrow-linewidth lasers are essential for various applications, but are limited by their size, weight, power, and cost requirements. Here we demonstrate a self-injection locked diode laser fabricated with a high quality factor fiber Fabry-Perot resonator, with a 145 Hz free-running linewidth. The locking scheme is all-fiber for plug-and-play operation. White frequency noise of 50Hz2/Hz is measured with over 42 dB reduction from the low-cost TO-can distributed feedback laser diode, and shows its wide applications in a compact and cost-effective way.

SELECTION OF CITATIONS
SEARCH DETAIL
...