Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.254
Filter
1.
Sci Total Environ ; 950: 175270, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111436

ABSTRACT

Increased anthropogenic activities over the last decades have led to a gradual increase in chromium (Cr) content in the soil, which, due to its high mobility in soil, makes Cr accumulation in plants a serious threat to the health of animals and humans. The present study investigated the ameliorative effect of foliar-applied Si nanoparticles (SiF) and soil-applied SiNPs enriched biochar (SiBc) on the growth of wheat in Cr-polluted soil (CPS). Two levels of CPS were prepared, including 12.5 % and 25 % by adding Cr-polluted wastewater in the soil as soil 1 (S1) and soil 2 (S2), respectively for the pot experiment with a duration of 40 days. Cr stress significantly reduced wheat growth, however, combined application of SiF and SiBc improved root and shoot biomass production under Cr stress by (i) reducing Cr accumulation, (ii) increasing activities of antioxidant enzymes (ascorbate peroxidase and catalase), and (iii) increasing protein and total phenolic contents in both root and shoot respectively. Nonetheless, separate applications of SiF and SiBc effectively reduced Cr toxicity in shoot and root respectively, indicating a tissue-specific regulation of wheat growth under Cr. Later, the Langmuir and Freundlich adsorption isotherm analysis showed a maximum soil Cr adsorption capacity ∼ Q(max) of 40.6 mg g-1 and 59 mg g-1 at S1 and S2 respectively, while the life cycle impact assessment showed scores of -1 mg kg-1 and -211 mg kg-1 for Cr in agricultural soil and - 0.184 and - 38.7 for human health at S1 and S2 respectively in response to combined SiF + SiBC application, thus indicating the environment implication of Si nanoparticles and its biochar in ameliorating Cr toxicity in different environmental perspectives.

2.
Article in English | MEDLINE | ID: mdl-39093066

ABSTRACT

OBJECTIVE: In this study, we developed an exercise training protocol for assessing both blood pressure dynamics and mRNA expression levels of purine receptors in various vascular tissues during physical activity. The objective is to assess the impact of exercise training on blood pressure regulation in spontaneously hypertensive rats (SHR) and purine receptors in vascular tissues. METHODS: Wistar Kyoto (WKY) and SHR rats were randomly allocated into sedentary (Sed) and exercise training (ExT) groups. Rats in the Sed groups were allowed unrestricted movement, whereas those in the ExT groups underwent a 16-week regimen of low- to moderate-intensity treadmill exercise. Throughout the intervention period, blood pressure measurements and body weight recordings were conducted. Additionally, mRNA expressions of purine receptors P2X1, P2Y1, and P2Y2 in renal artery (RA), internal carotid artery (Int), thoracic aorta (Aor), and caudal artery (Cau) tissues were assessed. RESULTS: In the Sed group, body weight of SHR rats was observed to be lower compared to the three other groups. Over the course of the exercise regimen, blood pressure in the ExT group of SHR rats reduced gradually, converging towards levels similar to those observed in WKY rats by the conclusion of the exercise period. Regarding mRNA expression patterns of P2X1 receptors across the four blood vessels, WKY and SHR rats demonstrated similar sequences, consistently displaying the highest expression levels in the Cau. Conversely, mRNA expressions of P2Y1 and P2Y2 receptors exhibited distinct sequences across the four blood vessels in both WKY and SHR rats. Notably, compared to the Sed group of WKY rats, mRNA expression of P2X1 receptor in the Int of SHR rats revealed an increase, while expressions in the Aor of WKY rats and the Cau of SHR rats decreased following exercise. Expression of P2Y1 receptor mRNA decreased across all four types of blood vessels in SHR rats. Post-exercise, P2Y1 receptor mRNA expression increased in the Aor, decreased in the Cau of WKY rats, and increased in the Int and renal artery (RA) of SHR rats. Conversely, expressions of P2Y2 receptor mRNA decreased in the Int and Aor of SHR rats. Except for the Aor of WKY rats, expressions of P2Y2 receptor mRNA increased in the other arteries of both rat types following exercise. CONCLUSION: Differences in the distribution of purine receptor subtypes among distinct arterial segments in both WKY and SHR rats were observed. Exercise training was found to enhance mRNA expression levels of P2Y receptors in these rat models. This finding implies that exercise training might reduce hypertension in SHR rats by bolstering the purinergic relaxation response.

3.
World J Diabetes ; 15(7): 1537-1550, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39099805

ABSTRACT

BACKGROUND: Dysfunction of the glymphatic system in the brain in different stages of altered glucose metabolism and its influencing factors are not well characterized. AIM: To investigate the function of the glymphatic system and its clinical correlates in patients with different glucose metabolism states, the present study employed diffusion tensor imaging along the perivascular space (DTI-ALPS) index. METHODS: Sample size was calculated using the pwr package in R software. This cross-sectional study enrolled 22 patients with normal glucose metabolism (NGM), 20 patients with prediabetes, and 22 patients with type 2 diabetes mellitus (T2DM). A 3.0T magnetic resonance imaging was used to evaluate the function of the glymphatic system. The mini-mental state examination (MMSE) was used to assess general cognitive function. The DTI-ALPS index of bilateral basal ganglia and the mean DTI-ALPS index was calculated. Further, the correlation between DTI-ALPS and clinical features was assessed. RESULTS: The left-side, right-side, and mean DTI-ALPS index in the T2DM group were significantly lower than that in the NGM group. The right-side DTI-ALPS and mean DTI-ALPS index in the T2DM group were significantly lower than those in the prediabetes group. DTI-ALPS index lateralization was not observed. The MMSE score in the T2DM group was significantly lower than that in the NGM and prediabetes group. After controlling for sex, the left-side DTI-ALPS and mean DTI-ALPS index in the prediabetes group were positively correlated with 2-hour postprandial blood glucose level; the left-side DTI-ALPS index was negatively correlated with total cholesterol and low-density lipoprotein level. The right-side DTI-ALPS and mean DTI-ALPS index were negatively correlated with the glycosylated hemoglobin level and waist-to-hip ratio in the prediabetes group. The left-side, right-side, and mean DTI-ALPS index in the T2DM group were positively correlated with height. The left-side and mean DTI-ALPS index in the T2DM group were negatively correlated with high-density lipoprotein levels. CONCLUSION: Cerebral glymphatic system dysfunction may mainly occur in the T2DM stage. Various clinical variables were found to affect the DTI-ALPS index in different glucose metabolism states. This study enhances our understanding of the pathophysiology of diabetic brain damage and provides some potential biological evidence for its early diagnosis.

4.
J Investig Med High Impact Case Rep ; 12: 23247096241267153, 2024.
Article in English | MEDLINE | ID: mdl-39087612

ABSTRACT

Anti-synthetase syndrome (ASyS) is an autoimmune disease characterized by the presence of autoantibodies to aminoacyl-tRNA synthetases accompanied with various organ involvements, including the lung, joints, and skin. The ASyS-related interstitial lung disease (ILD) can be seen in the vast majority of patients. The extent of lung involvement has a significant impact on patient prognosis; the occurrence of rapid-progressive ILD could prominently increase mortality. The mainstay of treatment is prednisone in combination with conventional synthetic disease-modifying anti-rheumatic drugs or some biologic disease-modifying anti-rheumatic drugs (DMARDs). Tocilizumab (TCZ), a recombinant humanized anti-interleukin (IL)-6 receptor monoclonal antibody, has also been used to treat some systemic autoimmune rheumatic diseases associated with ILD. Although the most recent American College of Rheumatology (ACR) Guideline for the Treatment of Interstitial Lung Disease conditionally recommends against the use of TCZ as a treatment option for people with idiopathic inflammatory myopathy (IIM)-ILD progression despite initial ILD treatment, the treatment effect of TCZ in ASyS patients remains obscure, particularly for refractory cases with anti-non-Jo1 antibodies. This report describes a case of Chinese ASyS patients with anti-EJ-positive antibodies who presented with typical proximal muscle weakness, elevated creatine kinase, and ILD with non-specific interstitial pneumonia (NSIP) pattern, along with typical skin involvement such as mechanic's hand. The patients were resistant to various treatments, including rituximab (RTX), but benefited from TCZ. In this case, TCZ shows good therapeutic efficacy in a fatal acute exacerbation of ILD with a hyperinflammatory status, resulting in a relative remission of the disease flare and full preservation of lung function with a positive long-term treatment outcome.


Subject(s)
Antibodies, Monoclonal, Humanized , Lung Diseases, Interstitial , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Lung Diseases, Interstitial/drug therapy , Myositis/drug therapy , Middle Aged , Autoantibodies/blood , Female , Male
5.
Clin Mol Hepatol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103994

ABSTRACT

Background: Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC. Patients and methods: We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time. Results: We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort. Conclusion: We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.

6.
Water Res ; 264: 122240, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39146854

ABSTRACT

The release of rubber-derived chemicals (RDCs) in road surface runoff has received significant attention. Urban surface runoff is often the confluence of stormwater runoff from specific areas. However, the impact of precipitation on RDCs contamination in confluent stormwater runoff and receiving watersheds remains poorly understood. Herein, we investigated the profiles of RDCs and their transformation products in confluent stormwater runoff and receiving rivers affected by precipitation events. The results showed that 34 RDCs are ubiquitously present in confluent stormwater runoff and surface water, with mean concentrations of 1.03-2749 and 0.28-436 ng/L, respectively. The most dominant target compounds in each category were N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, 2-benzothiazolol, and 1,3-diphenylguanidine. Total RDCs concentrations in confluent stormwater runoff decreased spatially from industrial areas to business districts to college towns. A significant decrease in RDCs levels in surface water after rainfall was observed (P < 0.01), indicating that precipitation contributes to alleviating RDCs pollution in receiving watersheds. To our knowledge, this is the first report of N,N'-ditolyl-p-phenylenediamine quinone (DTPD-Q) levels in surface waters in China. The annual mass load of ∑RDCs reached 72,818 kg/y in confluent stormwater runoff, while 38,799 kg/y in surface water. The monitoring of confluent stormwater runoff is an efficient measure for predicting contamination loads from RDCs in rivers. Risk assessment suggested that most RDCs posed at least medium risks to aquatic organisms, especially 6PPD-quinone. The findings help to understand the environmental fate and risks of RDCs in the confluent stormwater runoff and receiving environments after precipitation events.

7.
J Org Chem ; 89(16): 11659-11664, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39088305

ABSTRACT

Herein, we report a direct phosphorylation of the C(sp3)-H bond of 3,4-dihydroquinoxalin-2(1H)-ones using oxygen as a green oxidant under visible light at room temperature. This transformation was readily accomplished in the absence of metal and photosensitizer to construct new C(sp3)-P bonds and provide a series of phosphonylated dihydroquinoxalin-2-ones in good to excellent yields. This approach opens straightforward and environmentally friendly access to 3-phosphoryl quinoxalin-2-ones derivatives.

8.
Rev Cardiovasc Med ; 25(7): 236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39139430

ABSTRACT

Background: Atrial fibrillation (AF) can lead to a decline in left atrial appendage (LAA) function, potentially increasing the likelihood of LAA thrombus (LAAT) and spontaneous echo contrast (SEC). Measuring LAA flow velocity through transesophageal echocardiography (TEE) is currently the primary method for evaluating LAA function. This study aims to explore the potential correlation between anterior mitral annular plane systolic excursion (aMAPSE) and LAA stasis in patients with non-valvular atrial fibrillation (NVAF). Methods: A total of 465 patients with NVAF were enrolled between October 2018 and November 2021. Transthoracic echocardiography (TTE) and TEE were performed before scheduled electrical cardioversion. Propensity score matching (PSM) was used to balance confounders between the groups with and without LAAT/dense SEC. Results: Patients in the LAAT/dense SEC group showed increased left atrial (LA) diameter, LAA area, alongside reduced left ventricular ejection fraction (LVEF), LAA velocity, conjunction thickening ratio, aMAPSE, and LAA fraction area change (FAC) compared to those in the non-LAAT/dense SEC group. Multivariate logistic regression analysis identified aMAPSE and LAA FAC as independent predictors for LAAT/dense SEC. Specifically, an aMAPSE of < 6.76 mm and an LAA FAC of < 29.65% predicted LAAT/dense SEC with high diagnostic accuracy, demonstrated by an area under the curve (AUC) of 0.81 (sensitivity 0.81, specificity 0.80) for aMAPSE, and an AUC of 0.80 (sensitivity 0.70, specificity 0.84) for LAA FAC. Conclusions: Both aMAPSE and LAA FAC independently correlated with and accurately predict LAAT/dense SEC. Incorporating aMAPSE into routine TEE evaluations for LAA function alongside LAA flow velocity is recommended.

9.
ACS Infect Dis ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137394

ABSTRACT

Candida albicans is a common opportunistic fungus in humans, whose morphological switch between yeast and hyphae forms represents a key virulence trait. Developing strategies to inhibit C. albicans hyphal growth may provide insights into designs of novel antivirulent therapeutics. Importantly, the gut commensal bacterium, Enterococcus faecalis, secretes a bacteriocin EntV which has potent antivirulent and antifungal effects against C. albicans in infection models; however, hampered by the challenges to access large quantities of bioactive EntV, the detailed understanding of its mechanisms on C. albicans has remained elusive. In this work, we biochemically reconstituted the proteolytic cleavage reaction to obtain recombinant EntV88-His6 on a large preparative scale, providing facile access to the C-terminal EntV construct. Under in vitro C. albicans hyphal assay with specific inducers, we demonstrated that EntV88-His6 exhibits potent bioactivity against GlcNAc-triggered hyphal growth. Moreover, with fluorescent FITC-EntV88-His6, we revealed that EntV88-His6 enters C. albicans via endocytosis and perturbs the proper localization of the polarisome scaffolding Spa2 protein. Our findings provide important clues on EntV's mechanism of action. Surprisingly, we showed that EntV88-His6 does not affect C. albicans yeast cell growth but potently exerts cytotoxicity against C. albicans under hyphal-inducing conditions in vitro. The combination of EntV88-His6 and GlcNAc displays rapid killing of C. albicans, rendering it a promising antivirulent and antifungal agent.

10.
Org Lett ; 26(31): 6551-6555, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39078262

ABSTRACT

The asymmetric Mannich-type reaction of quinoxalin-2-ones with difluoroenoxysilanes has been developed for the synthesis of chiral gem-difluoroalkylated quinoxalin-2-ones. The reaction worked in the presence of chiral phosphoric acid CPA 1 and B(C6F5)3 in THF at room temperature. The reaction exhibited a good substrate scope furnishing the products in good yields (up to 97%) with up to 96% ee.

11.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026842

ABSTRACT

Current treatments for advanced prostate cancer (PCa) primarily target androgen receptor (AR)-pathways. However, the emergence of castration-resistant prostate cancer (CRPC) and resistance to AR signaling inhibitors (ARSI) remains a significant clinical challenge. This study introduces BSJ-5-63, a novel triple degrader targeting cyclin-dependent kinases (CDKs) CDK12, CDK7, and CDK9, with potential to transform CRPC therapy. BSJ-5-63 effectively downregulates homologous recombination repair (HRR) genes, including BRCA1 and BRCA2, through CDK12 degradation, and attenuates AR signaling through CDK7 and CDK9 degradation, further enhancing its therapeutic impact. Importantly, BSJ-5-63 induces a "BRCAness" state that persists for a significant duration, enabling sequential combination therapy with PARP inhibitors (PARPis) while potentially minimizing drug-related toxicity and resistance. In both in vitro and in vivo studies, BSJ-5-63 exhibited potent antiproliferative effects in both AR-positive and AR-negative CRPC models. This study presents a promising multi-pronged approach for CRPC treatment, addressing both DNA repair mechanisms and AR signaling, with the potential to benefit a wide range of patients regardless of their BRCA1/2 mutational status. SIGNIFICANCE: This study introduces BSJ-5-63, a triple degrader designed to target CDK12, CDK7, and CDK9, making a significant advancement in CRPC therapy. The distinctive mechanism of BSJ-5-63 involves downregulating HRR genes and inhibiting AR signaling, thereby inducing a BRCAness state. This enhances sensitivity to PARP inhibition, effectively addressing ARSI resistance and improving the overall efficacy of treatment. The development of BSJ-5-63 represents a promising therapeutic approach, with the potential to benefit a broad spectrum of CRPC patients.

12.
BMC Surg ; 24(1): 206, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987759

ABSTRACT

OBJECTIVE: To present our experience in the surgical management of completely extradural dumbbell spinal schwannomas with a new surgical strategy. METHOD: This study is a case series of patients treated at the Neurosurgery Department of the First Affiliated Hospital of USTC, between January 2018 and June 2021. RESULTS: 24 patients met the inclusion criteria, with cervical and lumbar spines being the most frequent locations. All patients underwent surgical treatment. Total gross resection was accomplished in all patients. Two cases had numbness and no case exhibited motor deficit. There was no postoperative CSF leakage or wound infection. CONCLUSION: Based on a limited number of observations, we conclude that our technique was feasible and effective for the treatment of extradural dumbbell spinal schwannomas. CLINICAL TRIAL: http://www.chictr.org.cn/ , No. ChiCTR2400086171.


Subject(s)
Neurilemmoma , Humans , Neurilemmoma/surgery , Female , Male , Middle Aged , Adult , Aged , Treatment Outcome , Spinal Cord Neoplasms/surgery , Neurosurgical Procedures/methods , Dura Mater/surgery , Retrospective Studies , Lumbar Vertebrae/surgery , Cervical Vertebrae/surgery
13.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3031-3039, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041163

ABSTRACT

Haematitum is a commonly used mineral medicine. It is toxic, as recorded in the second volume of Chinese Materia Medica. Therefore, it should not be taken for a long time. In this study, the effects of Haematitum and calcined Haematitum on multiple organ injuries in mice were investigated, and the mechanism of the toxicity of the related organs was explored by metabolomics. The mice were randomly divided into the control group, Haematitum low-dose group(ZS-L group), Haematitum high-dose group(ZS-H group), and calcined Haematitum high-dose group(DZS-H group), with 12 mice in each group. Haematitum decoction was given by continuous intragastric administration for 10 days. Then the life situation was observed, and samples were taken to detect various indicators. The results showed that the ZS-H group showed obvious toxicity, with different degrees of toxicity damage in the intestinal tract,liver, spleen, and lung. ZS-L group had no toxic reaction. The toxicity of the DZS-H group was significantly reduced, and only the lung was damaged. Metabolomics technology was used to detect the lung tissue of mice in the control group and the ZS-H group, and a total of 15 kinds of significant difference metabolites were detected, mainly involved in choline metabolism in cancer, sphingolipid metabolism, and glycerophospholipid metabolism. Immunohistochemical results showed that the INSIG1 protein expression level in the lung tissue of mice in the ZS-H group was significantly higher than that in the control group. In summary, large doses and long-time use of Haematitum decoction will cause a variety of organ damage, and the same dose of calcined Haematitum is less toxic than Haematitum. In addition, a low dose of Haematitum has no obvious toxic effect. The dysfunction of lipid metabolic pathways such as sphingolipid and glycerophospholipid metabolism may be an important factor in Haematitum-induced pulmonary toxicity. This study provides a reference for further research on the mechanism of Haematitum pulmonary toxicity.


Subject(s)
Drugs, Chinese Herbal , Lung , Animals , Mice , Drugs, Chinese Herbal/administration & dosage , Male , Lung/drug effects , Lung/metabolism , Liver/drug effects , Liver/metabolism , Spleen/drug effects , Spleen/metabolism , Multiple Organ Failure/metabolism , Multiple Organ Failure/etiology , Multiple Organ Failure/chemically induced , Female , Metabolomics , Humans
14.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
15.
Eur J Histochem ; 68(3)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037153

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most prevalent malignancy of the thyroid. Fibroblast growth factor receptor 1 (FGFR1) is highly expressed in PTC and works as an oncogenic protein in this disease. In this report, we wanted to uncover a new mechanism that drives overexpression of FGFR1 in PTC. Analysis of FGFR1 expression in clinical specimens and PTC cells revealed that FGFR1 expression was enhanced in PTC. Using siRNA/shRNA silencing experiments, we found that FGFR1 downregulation impeded PTC cell growth, invasion, and migration and promoted apoptosis in vitro, as well as suppressed tumor growth in vivo. Bioinformatic analyses predicted the potential USP7-FGFR1 interplay and the potential binding between YY1 and the FGFR1 promoter. The mechanism study found that USP7 stabilized FGFR1 protein via deubiquitination, and YY1 could promote the transcription of FGFR1. Our rescue experiments showed that FGFR1 re-expression had a counteracting effect on USP7 downregulation-imposed in vitro alterations of cell functions and in vivo suppression of xenograft growth. In conclusion, our study identifies the deubiquitinating enzyme USP7 and the oncogenic transcription factor YY1 as potent inducers of FGFR1 overexpression. Designing inhibitors targeting FGFR1 or its upstream inducers USP7 and YY1 may be foreseen as a promising strategy to control PTC development.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 1 , Thyroid Cancer, Papillary , Thyroid Neoplasms , YY1 Transcription Factor , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Humans , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Animals , Cell Line, Tumor , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Mice , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation/physiology , Female , Apoptosis , Cell Movement , Male
16.
Sci Rep ; 14(1): 16635, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39025906

ABSTRACT

The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/ß-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.


Subject(s)
Extracellular Vesicles , Liver , Mice, Knockout , MicroRNAs , Pituitary Gland , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Pituitary Gland/metabolism , Mice , Liver/metabolism , Cell Proliferation , Hepatocytes/metabolism , Wnt Signaling Pathway , Male , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Liver Regeneration/genetics , Carbon Tetrachloride/toxicity
17.
Biomedicines ; 12(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39061971

ABSTRACT

The aim of this systematic review is to report the normal cortical development of different fetal cerebral fissures on ultrasound, describe associated anomalies in fetuses with cortical malformations, and evaluate the quality of published charts of cortical fissures. The inclusion criteria were studies reporting development, anomalies, and reference charts of fetal cortical structures on ultrasound. The outcomes observed were the timing of the appearance of different cortical fissures according to different gestational age windows, associated central nervous system (CNS) and extra-CNS anomalies detected at ultrasound in fetuses with cortical malformation, and rate of fetuses with isolated anomaly. Furthermore, we performed a critical evaluation of the published reference charts for cortical development on ultrasound. Random-effect meta-analyses of proportions were used to combine the data. Twenty-seven studies (6875 fetuses) were included. Sylvian fissure was visualized on ultrasound in 97.69% (95% CI 92.0-100) of cases at 18-19, 98.17% (95% CI 94.8-99.8) at 20-21, 98.94% (95% CI 97.0-99.9) at 22-23, and in all cases from 24 weeks of gestation. Parieto-occipital fissure was visualized in 81.56% (95% CI 48.4-99.3) of cases at 18-19, 96.59% (95% CI 83.2-99.8) at 20-21, 96.85% (95% CI 88.8-100) at 22-23, and in all cases from 24 weeks of gestation, while the corresponding figures for calcarine fissure were 37.27% (95% CI 0.5-89.6), 80.42% (95% CI 50.2-98.2), 89.18% (95% CI 74.0-98.2), and 96.02% (95% CI 96.9-100). Malformations of cortical development were diagnosed as an isolated finding at ultrasound in 6.21% (95% CI 2.9-10.9) of cases, while they were associated with additional CNS anomalies in 93.79% (95% CI 89.1-97.2) of cases. These findings highlight the need for large studies specifically looking at the timing of the appearance of the different brain sulci. Standardized algorithms for prenatal assessment of fetuses at high risk of malformations of cortical development are also warranted.

18.
Reproduction ; 168(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38949488

ABSTRACT

In brief: Genes expressed in cumulus cells might be used as markers for competent oocytes/embryos. This study identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos. Abstract: Studies on the mechanisms behind cumulus expansion and cumulus cell (CC) apoptosis are essential for understanding the mechanisms for oocyte maturation. Genes expressed in CCs might be used as markers for competent oocytes and/or embryos. In this study, both in vitro (IVT) and in vivo (IVO) mouse oocyte models with significant difference in cumulus expansion and CC apoptosis were used to identify and validate new genes regulating cumulus expansion and CC apoptosis of mouse oocytes. We first performed mRNA sequencing and bioinformatic analysis using the IVT oocyte model to identify candidate genes. We then analyzed functions of the candidate genes by RNAi or gene overexpression to select the candidate cumulus expansion and CC apoptosis-regulating genes. Finally, we validated the cumulus expansion and CC apoptosis-regulating genes using the IVO oocyte model. The results showed that while Spp1, Sdc1, Ldlr, Ezr and Mmp2 promoted, Bmp2, Angpt2, Edn1, Itgb8, Cxcl10 and Agt inhibited cumulus expansion. Furthermore, Spp1, Sdc1 and Ldlr inhibited CC apoptosis. In conclusion, by using both IVT and IVO oocyte models, we have identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos and for elucidating the molecular mechanisms behind oocyte maturation.


Subject(s)
Apoptosis , Cumulus Cells , Gene Expression Profiling , Oocytes , Animals , Cumulus Cells/metabolism , Oocytes/metabolism , Oocytes/physiology , Mice , Female , In Vitro Oocyte Maturation Techniques , Syndecan-1/metabolism , Syndecan-1/genetics , Oogenesis/genetics , Osteopontin
19.
Environ Geochem Health ; 46(8): 270, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954122

ABSTRACT

Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.


Subject(s)
Cesium Radioisotopes , Mining , Soil Pollutants, Radioactive , Risk Assessment , China , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Humans , Strontium Radioisotopes/analysis , Cesium/analysis , Cities , Soil/chemistry , Monte Carlo Method , Radiation Monitoring
20.
J Chromatogr A ; 1731: 465199, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39053252

ABSTRACT

The success of polymerase chain reaction (PCR) depends on the quality of deoxyribonucleic acid (DNA) templates. This study developed a cost-effective and eco-friendly DNA extraction system utilizing poly(3,4-dihydroxyphenylalanine)-modified cellulose paper (polyDOPA@paper). PolyDOPA@paper was prepared by oxidatively self-polymerizing DOPA under weak alkaline conditions and utilizing the adhesive property of polyDOPA on different materials. Compared to the uncoated cellulose paper, polyDOPA coating significantly enhances DNA adsorption owing to its abundant amino, carboxyl, and hydroxyl moieties. The DNA extraction mechanism using polyDOPA@paper was discussed. The maximum adsorption capacity of polyDOPA@paper for DNA was 20.7 µg cm-2. Moreover, an automated extraction system was designed and fabricated using 3D printing technology. The device simplifies the operation and ensures the reproducibility and consistency of the results. More importantly, it eliminates the need for specialized training of operators. The feasibility of the polyDOPA@paper-based automated extraction system was evaluated by quantitatively detecting Escherichia coli in spiked milk samples via a real-time PCR. The detection limit was 102 cfu mL-1. The results suggest that the system would have significant potential in detecting pathogens.


Subject(s)
Cellulose , Dihydroxyphenylalanine , Limit of Detection , Milk , Paper , Polymers , Cellulose/chemistry , Cellulose/analogs & derivatives , Adsorption , Dihydroxyphenylalanine/chemistry , Dihydroxyphenylalanine/isolation & purification , Dihydroxyphenylalanine/analogs & derivatives , Polymers/chemistry , Milk/chemistry , Escherichia coli , Animals , Reproducibility of Results , DNA/isolation & purification , DNA/chemistry , Printing, Three-Dimensional , Real-Time Polymerase Chain Reaction , DNA, Bacterial/isolation & purification , DNA, Bacterial/analysis
SELECTION OF CITATIONS
SEARCH DETAIL