Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 260(Pt 2): 129599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246455

ABSTRACT

Addressing highly flammable and easily breeding bacteria property via environmentally friendly approach was critical for the large-scale application of lyocell fibers. Herein, a bio-based coating constructed by layer-by-layer deposition of adenosine triphosphate (ATP), chitosan (CS), and polyethyleneimine (PEI) was successfully fabricated to obtain excellent fire-resistant and antimicrobial lyocell fabrics (LBL/Lyocell). The resulted fabrics with add-on of 11.5 wt% achieved the limiting oxygen index (LOI) of 32.0 %. Meanwhile, compared with the pure lyocell fabrics, the peak of heat release rate (PHRR), total heat release (THR), and fire growth rate (FIGRA) of LBL/Lyocell fabrics decreased by 75.2 %, 61.0 % and 69.8 % in cone calorimetric test (CCT), respectively. By characterizing the gaseous products and solid residues, the presence of the ATP/CS/PEI coating could not only quickly form the dense expanded carbon layer by itself, but also promote the conversion of cellulose into thermal-stability residues, thus reducing the release of combustible substances during combustion and protecting the lyocell fabrics. In addition, LBL/Lyocell showed excellent antimicrobial properties with 99.99 % antibacterial rates against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This bio-based coating was a promising candidate for efficiently flame-retardant cellulose fibers with excellent antibacteria.


Subject(s)
Chitosan , Flame Retardants , Escherichia coli , Polyethyleneimine , Staphylococcus aureus , Adenosine Triphosphate , Anti-Bacterial Agents/pharmacology , Cellulose
SELECTION OF CITATIONS
SEARCH DETAIL