Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 920
Filter
1.
Eur J Med Chem ; 272: 116469, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38704939

ABSTRACT

Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.

2.
Am J Cardiol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703883

ABSTRACT

Transcatheter aortic valve replacement (TAVR) has emerged as an alternative treatment for patients with pure severe aortic regurgitation (PSAR) who are contraindicated for surgery or have a high surgical risk. However, the therapeutic efficacy and safety of TAVR in low Society of Thoracic Surgeons (STS) score risk patients remain to be clarified. This study aimed to explore the feasibility of TAVR treatment in different STS-risk patients and to compare the adverse events between the groups. In this study, patients with PSAR who underwent TAVR at Zhongshan Hospital, Fudan University, China, during the inclusion period were included and categorized into 3 groups based on STS scores. The baseline data, imaging results, and follow-up data of the patients were documented. Therefore, of 75 TAVR patients, 38 (50.7%) were categorized as low risk (STS <4), and 37 (49.3%) patients were categorized as intermediate and high risk (STS ≥4). Compared with patients at intermediate and high risk, those in the low-risk group were younger, had a lower body mass index, had a lower prevalence of hypertension, chronic obstructive pulmonary disease, and previous percutaneous coronary intervention, and had better cardiac function (p all <0.05). In the hospital and at the 1-month follow-up, the degree of aortic regurgitation and cardiac function were significantly improved. No significant difference was found between the 2 groups in the hospital or during the 30-day follow-up. In conclusion, TAVR for PSAR in low-STS-risk patients is safe and efficient during 30 days of follow-up compared with intermediate- and high-STS-risk groups. TAVR for PSAR should not be limited to inoperable or STS-defined high-risk patients. Long-term follow-up is needed for further investigation.

3.
Nanomicro Lett ; 16(1): 191, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700650

ABSTRACT

Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.

4.
Front Public Health ; 12: 1368178, 2024.
Article in English | MEDLINE | ID: mdl-38694975

ABSTRACT

Background: Shift work can disrupt sleep quality and gut health. Nurses and midwives constitute approximately half of the global healthcare shift-working workforce. Our previous study revealed that most midwives were experiencing suboptimal health conditions, characterized by poor sleep quality and a high prevalence of gastrointestinal diseases. The gut-brain axis theory highlights the potential interplay between sleep quality and gut health. However, limited research focuses on this relationship among midwives. Methods: A cross-sectional survey included 2041 midwives from 87 Chinese hospitals between March and October 2023. Participants completed standardized questionnaires assessing sleep quality, gut health, depression, anxiety, and work stress. Binary logistic regression analyzed factors associated with poor sleep, and multiple linear regression examined the influence of sleep quality on gut health. Results: Over 60% of midwives reported poor sleep, with many experiencing gastrointestinal disorders. We observed a bidirectional relationship between sleep quality and gut health among midwives. After multivariable adjustments, midwives with higher gut health scores were more likely to experience poor sleep quality (odds ratio = 1.042, 95% confidence interval = 1.03-1.054). Conversely, midwives with higher sleep quality scores were also more likely to have poor gut health (ß = 0.222, 95% confidence interval = 0.529-0.797). These associations remained robust across sensitivity analyses. Furthermore, depression, anxiety, and work stress significantly affected both sleep quality and gut health among midwives. Conclusion: This study enhances our understanding of the intricate relationship between sleep quality and gut health among midwives. Poor gut health was associated with a higher risk of poor sleep, and vice versa. To improve the overall wellbeing of midwives, the findings emphasize the importance of addressing poor sleep quality and promoting gut health through maintaining a healthy diet, lifestyle, and good mental health. Further studies are needed to confirm our findings and clarify the underlying mechanisms.


Subject(s)
Sleep Quality , Humans , Cross-Sectional Studies , China/epidemiology , Adult , Female , Prevalence , Surveys and Questionnaires , Middle Aged , Midwifery/statistics & numerical data , Gastrointestinal Diseases/epidemiology , Sleep Wake Disorders/epidemiology
5.
ACS Appl Mater Interfaces ; 16(17): 21965-21974, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38646891

ABSTRACT

The metal oxide electron transport layers (ETLs) with flat morphology and high electrical quality are essential to manufacture highly efficient perovskite solar cells (PSCs), in which the regulation of the metal oxide deposition process plays a crucial role. Herein, a judiciously designed dopamine sulfonate (DS) ligand-assisted deposition of titanium dioxide (TiO2) films approach is implemented based on electrostatic repulsion and steric hindrance of assembled ligands to improve colloidal nanoparticles dispersity in precursor and effectively inhibit their aggregation, which could enable obtaining smooth topography of TiO2 films and initiating growth of top high-quality perovskite films. Furthermore, sulfonate bridges bonded on the perovskite buried layer that is beneficial to form better buried interface contact and accelerate electron extraction. As a result, the PSCs employing DS/TiO2 ETLs exhibit the best power conversion efficiency of 24.53% with impressive storage stability and operation stability, i.e., remaining more than 88% of their initial efficiency upon storage N2 glovebox without encapsulation over 4000 h, and the efficiency does not attenuate significantly under maximum power point for 60 h.

6.
Int J Clin Health Psychol ; 24(2): 100464, 2024.
Article in English | MEDLINE | ID: mdl-38660391

ABSTRACT

Background: Motor control declines with age and requires effective connectivity between the sensorimotor cortex and the primary motor cortex (M1). Despite research indicating that physical exercise can improve motor control in older individuals the effect of physical exercise on neural connectivity in older adults remains to be elucidated. Methods: Older adults with experience in table tennis and fit aerobics and individuals without such experience for comparison were recruited for the study. Differences in motor control were assessed using the stop-signal task. The impact of exercise experience on DLPFC-M1 and pre-SMA-M1 neural connectivity was assessed with transcranial magnetic stimulation. Varied time intervals (short and long term) and stimulus intensities (subthreshold and suprathreshold) were used to explore neural connectivity across pathways. Results: The present study showed that behavioral iexpression of the table tennis group was significantly better than the other two groups;The facilitatory regulation of preSMA-M1 in all groups is negatively correlated with SSRT. Regulatory efficiency was highest in the table tennis group. Only the neural network regulatory ability of the Table Tennis group showed a negative correlation with SSRT; Inhibitory regulation of DLPFC-M1 was positively correlated with SSRT; this effect was most robust in the table tennis group. Conclusion: The preliminary findings of this study suggest that table tennis exercise may enhance the motor system regulated by neural networks and stabilize inhibitory regulation of DLPFC-M1, thereby affecting motor control in older adults.

7.
J Imaging Inform Med ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627269

ABSTRACT

Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.

8.
Arch Biochem Biophys ; 756: 109998, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641233

ABSTRACT

The kinesin-5 family member, Eg5, plays very important role in the mitosis. As a mitotic protein, Eg5 is the target of various mitotic inhibitors. There are two targeting pockets in the motor domain of Eg5, which locates in the α2/L5/α3 region and the α4/α6 region respectively. We investigated the interactions between the different inhibitors and the two binding pockets of Eg5 by using all-atom molecular dynamics method. Combined the conformational analysis with the free-energy calculation, the binding patterns of inhibitors to the two binding pockets are shown. The α2/L5/α3 pocket can be divided into 4 regions. The structures and binding conformations of inhibitors in region 1 and 2 are highly conserved. The shape of α4/α6 pocket is alterable. The space of this pocket in ADP-binding state of Eg5 is larger than that in ADP·Pi-binding state due to the limitation of a hydrogen bond formed in the ADP·Pi-binding state. The results of this investigation provide the structural basis of the inhibitor-Eg5 interaction and offer a reference for the Eg5-targeted drug design.


Subject(s)
Kinesins , Molecular Dynamics Simulation , Protein Binding , Kinesins/antagonists & inhibitors , Kinesins/chemistry , Kinesins/metabolism , Binding Sites , Humans , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/chemistry , Hydrogen Bonding
10.
Purinergic Signal ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489005

ABSTRACT

Berberine (BBR) is a Chinese herb with antioxidant and anti-inflammatory properties. In a previous study, we found that BBR had a protective effect against light-induced retinal degeneration in BALB/c mice. The purinergic P2X7 receptor (P2X7R) plays a key role in retinal degeneration via inducing oxidative stress, inflammatory changes, and cell death. The aim of this study was to investigate whether BBR can induce protective effects in light damage experiments and whether P2X7R can get involved in these effects. C57BL/6 J mice and P2X7 knockout (KO) mice on the C57BL/6 J background were used. We found that BBR preserved the outer nuclear layer (ONL) thickness and retinal ganglion cells following light stimulation. Furthermore, BBR significantly suppressed photoreceptor apoptosis, pro-apoptotic c-fos expression, pro-inflammatory responses of Mϋller cells, and inflammatory factors (TNF-α, IL-1ß). In addition, protein levels of P2X7R were downregulated in BBR-treated mice. Double immunofluorescence showed that BBR reduced overexpression of P2X7R in retinal ganglion cells and Mϋller cells. Furthermore, BBR combined with the P2X7R agonist BzATP blocked the effects of BBR on retinal morphology and photoreceptor apoptosis. However, in P2X7 KO mice, BBR had an additive effect resulting in thicker ONL and more photoreceptors. The data suggest that the P2X7 receptor is involved in retinal light damage, and BBR inhibits this process by reducing histological impairment, cell death, and inflammatory responses.

11.
Adv Sci (Weinh) ; : e2400870, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553790

ABSTRACT

Thermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride-based alloys are still the best for near-room-temperature applications. In this work, a ≈38% enhancement of the average ZT (300-473 K) to 1.21 is achieved by mixing Bi0.4Sb1.6Te3 with an emerging thermoelectric material Sb2Si2Te6, which is significantly higher than that of most BiySb2-yTe3-based composites. This enhancement is facilitated by the unique interface region between the Bi0.4Sb1.6Te3 matrix and Sb2Si2Te6-based precipitates with an orderly atomic arrangement, which promotes the transport of charge carriers with minimal scattering, overcoming a common factor that is limiting ZT enhancement in such composites. At the same time, high-density dislocations in the same region can effectively scatter the phonons, decoupling the electron-phonon transport. This results in a ≈56% enhancement of the thermoelectric quality factor at 373 K, from 0.41 for the pristine sample to 0.64 for the composite sample. A single-leg device is fabricated with a high efficiency of 5.4% at ΔT = 164 K further demonstrating the efficacy of the Sb2Si2Te6 compositing strategy and the importance of the precipitate-matrix interface microstructure in improving the performance of materials for relatively low-temperature applications.

12.
J Int Med Res ; 52(3): 3000605241236278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483140

ABSTRACT

OBJECTIVE: To assess the efficacy of dynamic changes in lymphocyte-C-reactive protein ratio (LCR) on differentiating disease severity and predicting disease progression in adult patients with Coronavirus disease 2019 (COVID-19). METHODS: This single-centre retrospective study enrolled adult COVID-19 patients categorized into moderate, severe and critical groups according to the Diagnosis and Treatment of New Coronavirus Pneumonia (ninth edition). Demographic and clinical data were collected. LCR and sequential organ failure assessment (SOFA) score were calculated. Lymphocyte count and C-reactive protein (CRP) levels were monitored on up to four occasions. Disease severity was determined concurrently with each LCR measurement. RESULTS: This study included 145 patients assigned to moderate (n = 105), severe (n = 33) and critical groups (n = 7). On admission, significant differences were observed among different disease severity groups including age, comorbidities, neutrophil proportion, lymphocyte count and proportion, D-Dimer, albumin, total bilirubin, direct bilirubin, indirect bilirubin, CRP and SOFA score. Dynamic changes in LCR showed significant differences across different disease severity groups at different times, which were significantly inversely correlated with disease severity of COVID-19, with correlation coefficients of -0.564, -0.548, -0.550 and -0.429 at four different times. CONCLUSION: Dynamic changes in LCR can effectively differentiate disease severity and predict disease progression in adult COVID-19 patients.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/diagnosis , Retrospective Studies , C-Reactive Protein/analysis , SARS-CoV-2 , Biomarkers , Patient Acuity , Severity of Illness Index , Lymphocytes/metabolism , Disease Progression , Bilirubin
13.
J Inflamm Res ; 17: 1659-1669, 2024.
Article in English | MEDLINE | ID: mdl-38504695

ABSTRACT

Purpose: In this study, our objective was to investigate the potential utility of lymphocyte-C-reactive protein ratio (LCR) as a predictor of disease progression and a screening tool for intensive care unit (ICU) admission in adult patients with acute pancreatitis (AP). Methods: We included a total of 217 adult patients with AP who were admitted to the First Affiliated Hospital of Harbin Medical University between July 2019 and June 2022. These patients were categorized into three groups: mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP), based on the presence and duration of organ dysfunction. Various demographic and clinical data were collected and compared among different disease severity groups. Results: Height, diabetes, lymphocyte count (LYMPH), lymphocyte percentage (LYM%), platelet count (PLT), D-Dimer, albumin (ALB), blood urea nitrogen (BUN), serum creatinine (SCr), glucose (GLU), calcium ion (Ca2+), C-reactive protein (CRP), procalcitonin (PCT), hospitalization duration, ICU admission, need for BP, LCR, sequential organ failure assessment (SOFA) score, bedside index for severity in AP (BISAP) score, and modified Marshall score showed significant differences across different disease severity groups upon hospitalization. Notably, there were significant differences in LCR between the MAP group and the MSAP and SAP combined group, and the MAP and MSAP combined group and the SAP group, and adult AP patients with ICU admission and those without ICU admission upon hospitalization. Conclusion: In summary, LCR upon hospitalization can be utilized as a simple and reliable predictor of disease progression and a screening tool for ICU admission in adult patients with AP.

14.
J Ethnopharmacol ; 329: 118099, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38554853

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY: To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS: Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS: 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION: Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.

15.
Braz J Otorhinolaryngol ; 90(4): 101413, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38537503

ABSTRACT

OBJECTIVE: A retrospective analysis was performed to explore the clinical effect of the Posterior Nasal Nerve (PNN) resection combined with hormone transnasal nebulization on Difficult-to-Treat Rhinosinusitis (DTRS). METHODS: A total of 120 DTRS patients were selected and divided into a control group (n = 60) and a study group (n = 60) according to different treatments. The control group patients were treated via PNN resection, followed by normal saline transnasal nebulization; the study group patients were given PNN resection and then treated with budesonide suspension transnasal nebulization. Subsequently, the comparison was performed between the two groups in terms of (1) Clinical baseline characteristics; (2) Sino-nasal Outcome Test (SNOT)-22 scores before treatment and after 3-months, 6-months and 12-months of treatment; (3) Lund-MacKay scores before treatment and after 10, 30, 90, and 180 days of treatment; (4) Incidence of adverse reactions during treatment. RESULTS: There was no significant difference in SNOT-22 or Lund-Kennedy scores between the two groups before treatment (p > 0.05). After treatment, the SNOT-22 and Lund-Kennedy scores of the control and the study groups were decreased, and compared with the control group, the SNOT-22 and Lund-Kennedy scores in the study group improved more significantly (p < 0.05). In addition, the study group and the control group presented with 1 and 4 cases of nasal adhesion, 2 and 3 cases of epistaxis, 1 and 4 cases of sinus orifice obstruction, 1 and 3 cases of lacrimal duct injuries, respectively. The incidence of adverse reactions in the study group was significantly lower than that in the control group (8.3% vs. 23.3%) (p < 0.05). CONCLUSION: PNN resection combined with hormone transnasal nebulization treatment can improve the symptoms and quality of life of DTRS patients, with good clinical efficacy but few adverse reactions. Therefore, such combination treatment deserves a promotion and application clinically. LEVEL OF EVIDENCE: Level 3.

16.
Nat Commun ; 15(1): 2797, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555355

ABSTRACT

Silent information regulator 2 (Sir2) proteins typically catalyze NAD+-dependent protein deacetylation. The recently identified bacterial Sir2 domain-containing protein, defense-associated sirtuin 2 (DSR2), recognizes the phage tail tube and depletes NAD+ to abort phage propagation, which is counteracted by the phage-encoded DSR anti-defense 1 (DSAD1), but their molecular mechanisms remain unclear. Here, we determine cryo-EM structures of inactive DSR2 in its apo form, DSR2-DSAD1 and DSR2-DSAD1-NAD+, as well as active DSR2-tube and DSR2-tube-NAD+ complexes. DSR2 forms a tetramer with its C-terminal sensor domains (CTDs) in two distinct conformations: CTDclosed or CTDopen. Monomeric, rather than oligomeric, tail tube proteins preferentially bind to CTDclosed and activate Sir2 for NAD+ hydrolysis. DSAD1 binding to CTDopen allosterically inhibits tube binding and tube-mediated DSR2 activation. Our findings provide mechanistic insight into DSR2 assembly, tube-mediated DSR2 activation, and DSAD1-mediated inhibition and NAD+ substrate catalysis in bacterial DSR2 anti-phage defense systems.


Subject(s)
Sirtuins , Sirtuins/metabolism , NAD/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2 , Hydrolysis
17.
Food Chem X ; 22: 101289, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38544933

ABSTRACT

Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.

18.
Phytomedicine ; 127: 155440, 2024 May.
Article in English | MEDLINE | ID: mdl-38452691

ABSTRACT

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Subject(s)
Bufanolides , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , G2 Phase Cell Cycle Checkpoints , Head and Neck Neoplasms/drug therapy , Cell Line, Tumor
19.
Schizophr Res Cogn ; 36: 100304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444400

ABSTRACT

The hematopoietically-expressed homeobox gene (HHEX) played a critical role in regulating the immune system that the abnormality of which was involved in the psychopathology and cognitive deficits of psychiatric disorders. The aim of this study was to investigate the effect of HHEX rs1111875 polymorphism on the susceptibility and cognitive deficits of first-episode schizophrenic patients (FSP). We assessed cognitive function in 239 first-episode patients meeting DSM-IV for schizophrenia, and 368 healthy controls using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The HHEX rs1111875 polymorphism was genotyped. Our results showed that the allelic and genotypic frequencies of HHEX rs1111875 polymorphism didn't differ between FSP and healthy controls (both p > 0.05) after adjusting for sex and age. Cognitive test scores in FSP were significantly lower than those in healthy controls on all scales (all p < 0.001) except for the visuospatial/constructional score (p > 0.05) after adjusting for covariates. There was a significant genotype (p < 0.05) rather than genotype × diagnosis (p > 0.05) effect on the delayed memory score after adjusting for covariates. The HHEX rs1111875 polymorphism was significantly associated with the delayed memory score in FSP (p < 0.05), but not in healthy controls (p > 0.05) after adjusting for covariates. Our findings supported that the HHEX rs1111875 polymorphism did not contribute to the susceptibility to FSP. However, this polymorphism might influence the delayed memory in FSP. Moreover, FSP had poorer cognitive function than healthy controls except for the visuospatial/constructional domain.

20.
Small ; : e2311823, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456380

ABSTRACT

Perception of UV radiation has important applications in medical health, industrial production, electronic communication, etc. In numerous application scenarios, there is an increasing demand for the intuitive and low-cost detection of UV radiation through colorimetric visual behavior, as well as the efficient and multi-functional utilization of UV radiation. However, photodetectors based on photoconductive modes or photosensitive colorimetric materials are not conducive to portable or multi-scene applications owing to their complex and expensive photosensitive components, potential photobleaching, and single-stimulus response behavior. Here, a multifunctional visual sensor based on the "host-guest photo-controlled permutation" strategy and the "lock and key" model is developed. The host-guest specific molecular recognition and electrochromic sensing platform is integrated at the micro-molecular scale, enabling multi-functional and multi-scene applications in the convenient and fast perception of UV radiation, military camouflage, and information erasure at the macro level of human-computer interaction through light-electrical co-controlled visual switching characteristics. This light-electrical co-controlled visual sensor based on an optoelectronic multi-mode sensing system is expected to provide new ideas and paradigms for healthcare, microelectronics manufacturing, and wearable electronic devices owing to its advantages of signal visualization, low energy consumption, low cost, and versatility.

SELECTION OF CITATIONS
SEARCH DETAIL
...