Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Integr Plant Biol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136601

ABSTRACT

It has been proposed that cortical fine actin filaments are needed for the morphogenesis of pavement cells (PCs). However, the precise role and regulation mechanisms of actin filaments in PC morphogenesis are not well understood. Here, we found that Arabidopsis thaliana ACTIN DEPOLYMERIZING FACTOR9 (ADF9) is required for the morphogenesis of PC, which is negatively regulated by the R2R3 MYELOBLASTOSIS (MYB) transcription factor MYB52. In adf9 mutants, the lobe number of cotyledon PCs was significantly reduced, while the average lobe length did not differ significantly compared to that of wild type (Col-0), except for the variations in cell area and circularity, whereas the PC shapes in ADF9 overexpression seedlings showed different results. ADF9 decorated actin filaments, and colocalized with plasma membrane. The extent of filament bundling and actin filament bundling activity in adf9 mutant decreased. In addition, MYB52 directly targeted the promoter of ADF9 and negatively regulated its expression. The myb52-2 mutant showed increased lobe number and cell area, reduced cell circularity of PCs, and the PC phenotypes were suppressed when ADF9 was knocked out. Taken together, our data demonstrate that actin filaments play an important role in the morphogenesis of PC and reveal a transcriptional mechanism underlying MYB52 regulation of ADF9-mediated actin filament bundling in PC morphogenesis.

2.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984951

ABSTRACT

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Subject(s)
Extracellular Vesicles , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Vascular Endothelial Growth Factor A , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Humans , Stem Cells/metabolism , Male , Gene Expression Regulation , Wound Healing/genetics , Cell Hypoxia/genetics , Signal Transduction , Up-Regulation/genetics , Neovascularization, Physiologic/genetics
3.
Chemosphere ; 358: 142198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697566

ABSTRACT

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Subject(s)
Air Pollutants , Palladium , Air Pollutants/analysis , Palladium/chemistry , Adsorption , Water/chemistry , Environmental Monitoring/methods , Gases/analysis , Humidity , Carbon Monoxide/analysis , Nitriles/chemistry , Nitriles/analysis
4.
Article in English | MEDLINE | ID: mdl-38683967

ABSTRACT

Hindered by the high diffusion energy barrier of Li+ in graphite anode layers, the low-temperature application of traditional Li-ion batteries is limited. Lithium metal without intercalation and with excellent specific capacity is expected to support battery operation at low temperatures. However, due to the low conductivity, high freezing point, and strong solvation energy of traditional carbonate electrolytes, the application of lithium-metal batteries at low temperatures remains challenged. In this paper, an all-ester-based ternary solvent electrolyte based on fluorinated carbonate and methyl acetate is developed to improve the cyclic efficiency of the Li-metal anode at subzero temperatures. Methyl acetate, with low viscosity and low freezing point, endows Li+ with efficient transfer in the bulk phase at low temperatures. Fluorinated cosolvent regulates the solvation structure, thereby facilitating Li+ desolvation while forming a LiF-rich solid electrolyte interphase. The electrolyte exhibits good compatibility with the Li-metal anode, as confirmed by the significantly reduced kinetic barrier of Li+ diffusion at the interface. The theoretical calculations suggest that anions occupy the dominant positions within the inner solvation sheath. The in situ/ex situ characterizations provide straightforward evidence of a dendrite-free Li-metal electrode during cycling. As a result, the symmetric Li||Li cell is able to cycle stably for thousands of hours at current densities of 0.5 mA cm-2 and 1 mAh cm-2. When paired with a LiFePO4 cathode, the battery at 0.2 C (1 C = 170 mA g-1) has a capacity retention of 95.4% after 200 cycles at -15 °C and 92.6% after 100 cycles at -20 °C, respectively.

5.
Mol Med Rep ; 29(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639180

ABSTRACT

Knee osteoarthritis (KOA) is a major cause of disability in elderly individuals. Dicoumarol is a coumarin­like compound derived from sweet clover [Melilotus officinalis (L.) Pall]. It has been suggested that dicoumarol exhibits various types of pharmacological activities, including anticoagulant, antitumor and antibacterial effects. Due to its various biological activities, dicoumarol has a potential protective effect against OA. Therefore, the present study aimed to assess the effects of dicoumarol on knee osteoarthritis. In the present study, dicoumarol was found to protect rat synoviocytes from lipopolysaccharide (LPS)­induced cell apoptosis. Western blot analysis showed that dicoumarol significantly reduced the protein expression levels of fibrosis­related markers and inflammatory cytokines (Tgfb, Timp, Col1a, Il1b and Il18). The inhibitory rates of these proteins were all >50% (P<0.01) compared with those in the LPS and ATP­induced group. Consistently, the mRNA expression levels of these markers and cytokines were decreased to normal levels by dicoumarol after the treatment of rat synovial fibroblasts with LPS and ATP. Mechanistic studies demonstrated that dicoumarol did not affect NF­κB signaling, but it did directly interact with NOD­like receptor protein 3 (NLRP3) to promote its protein degradation, which could be reversed by MG132, but not NH4Cl. The protein half­life of NLRP3 was accelerated from 26.1 to 4.3 h by dicoumarol. Subsequently, dicoumarol could alleviate KOA in vivo; knee joint diameter was decreased from 11.03 to 9.93 mm. Furthermore, the inflammation and fibrosis of the knee joints were inhibited in rats. In conclusion, the present findings demonstrated that dicoumarol could impede the progression of KOA by inhibiting NLRP3 activation, providing a potential treatment strategy for KOA.


Subject(s)
Osteoarthritis, Knee , Animals , Rats , Adenosine Triphosphate , Cytokines , Dicumarol , Fibrosis , Inflammasomes/metabolism , Inflammation , Lipopolysaccharides/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Osteoarthritis, Knee/metabolism
6.
Int J Biol Macromol ; 264(Pt 1): 130157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360232

ABSTRACT

With the continuous development of the society, there is a growing demand for the durability, versatility and multifunction of cott fabrics. In this work, the cotton fabric is coated with multifunctional coating via dip-coating of transition metal carbide (MXene) and then encapsulation of dimethyloctadecyl [3-trimethoxysilopropyl] ammonium chloride (QAS). In view of MXene with excellent light absorption and photothermal conversion efficiency, the controllable antibacterial performance of the cotton fabric is further improved. Benefiting from the encapsulation of QAS, CF@P@M@QAS fabric shows mechanical stability (24 h washing, 1000 cycles folding test and 100 cyclic abrasion) and hydrophobicity. Meantime, the QAS on the surface of multifunctional cotton fabric significantly increases antibacterial activity, and the antibacterial rate can reach to 100 % against Staphylococcus aureus (S. aureus) and 98 % Escherichia coli (E. coli). Besides, CF@P@M@QAS cotton fabric also integrates functions of fire safety and physical therapy. Thus, this multifunctional cotton fabric based MXene offers a novel solution for extending its application in medical electronics and physical therapy.


Subject(s)
Cotton Fiber , Escherichia coli , Nitrites , Transition Elements , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Quaternary Ammonium Compounds
7.
Angew Chem Int Ed Engl ; 63(21): e202401055, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38391043

ABSTRACT

Lithium-sulfur (Li-S) battery with a sulfurized polyacrylonitrile cathode is a promising alternative to Li-ion systems. However, the sluggish charge transfer of cathode and accumulation of inactive Li on anode remain persistent challenges. An advanced electrolyte additive with function towards both cathode and anode holds great promise to address these issues. Herein, we present a new strategy to boost sulfur activity and rejuvenate dead Li simultaneously. In the polar electrolyte containing I2-LiNO3 additives, I3 -/IO3 - are triggered significantly by the reaction between NO3 - and I- ions. The I3 -/IO3 - are reactive to insulated Li2S product of cathode and inactive Li on anode, thus accelerating the conversion reaction of sulfur and recovering Li sources back to battery cycling. The in situ/ex situ spectroscopic and morphologic monitoring reveal the crucial role of iodine in promoting Li2S dissociation and inhibiting dendritic Li growth. With the modified electrolyte, the symmetric Li||Li cells deliver a lifespan of 4000 h with an overpotential less than 12 mV at 0.5 mA cm-2. For Li-S cells, 100 % capacity retention up to thousands of cycles and enhanced rate capability are available. This work demonstrates a feasible strategy on electrolyte engineering for practical applications of Li-S batteries.

8.
ACS Appl Mater Interfaces ; 16(3): 3674-3684, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38198663

ABSTRACT

When partial discharges occur in air-insulated equipment, the air decomposes to produce a variety of contamination products, resulting in a reduction in the insulation performance of the insulated equipment. By monitoring the concentration of typical decomposition products (CO, NO, and NO2) within the insulated equipment, potential insulation faults can be diagnosed. MoS2 has shown promising applications as a gas-sensitive semiconductor material, and doping metal oxides can improve the gas-sensitive properties of the material. Therefore, in this work, MoS2 has been doped using the popular metal oxides (ZnO, TiO2) of the day, and its gas-sensitive properties to the typical decomposition products of air have been analyzed and compared using density functional theory (DFT) calculations. The stability of the doped system was investigated using molecular dynamics methods. The related adsorption mechanism was analyzed by adsorption configuration, energy band structure, density of states (DOS) analysis, total electron density (TED) analysis, and differential charge density (DCD) analysis. Finally, the practical application of related sensing performance is evaluated. The results show that the doping of metal oxide nanoparticles greatly improves the conductivity, gas sensitivity, and adsorption selectivity of MoS2 monolayer to air decomposition products. The sensing response of ZnO-MoS2 for CO at room temperature (25 °C) reaches 161.86 with a good recovery time (0.046 s). TiO2-MoS2 sensing response to NO2 reaches 3.5 × 106 at 25 °C with a good recovery time (0.108 s). This study theoretically solves the industrial challenge of recycling sensing materials and provides theoretical value for the application of resistive chemical sensors in air-insulated equipment.

9.
J Chem Phys ; 160(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38180256

ABSTRACT

To cope with the shuttling of soluble lithium polysulfides in lithium-sulfur batteries, confinement tactics, such as trapping of sulfur within porous carbon structures, have been extensively studied. Although performance has improved a bit, the slow polysulfide conversion inducing fast capacity decay remains a big challenge. Herein, a NiS2/carbon (NiS2/C) composite with NiS2 nanoparticles embedded in a thin layer of carbon over the surface of micro-sized hollow structures has been prepared from Ni-metal-organic frameworks. These unique structures can physically entrap sulfur species and also influence their redox conversion kinetics. By improving the reaction kinetics of polysulfides, the NiS2/carbon@sulfur (NiS2/C@S) composite cathode with a suppressed shuttle effect shows a high columbic efficiency and decent rate performance. An initial capacity of 900 mAh g-1 at the rate of 1 C (1 C = 1675 mA g-1) and a low-capacity decline rate of 0.132% per cycle after 500 cycles are obtained, suggesting that this work provides a rational design of a sulfur cathode.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1039368

ABSTRACT

@#[摘 要] 目的:探讨高良姜素(Gal)是否通过调节cGAS/STING信号通路影响骨肉瘤MG63细胞增殖、迁移、侵袭和凋亡。方法:体外培养人骨肉瘤MG63细胞,分别使用0、5、15、25、50、100、200 μmol/L的Gal培养48 h后,CCK-8法检测Gal对细胞活力的影响。将MG63细胞分为对照组(未处理细胞)、Gal低浓度组(Gal-L组,50 μmol/L Gal处理)、Gal高浓度组(Gal-H组,100 μmol/L Gal处理)和Gal-H+STING抑制剂组(Gal-H+H-151组,100 μmol/L Gal+8 μmol/L H-151处理)。采用EdU染色法、划痕愈合实验、Transwell小室法、流式细胞术检测各组细胞增殖活力、迁移、侵袭和凋亡能力,WB法检测各组细胞中cGAS、STING蛋白的表达水平。结果:与对照组比较,Gal-L组、Gal-H组细胞增殖活力、迁移、侵袭能力均显著降低(均P<0.05),细胞凋亡率和cGAS、STING蛋白表达水平均显著升高(均P<0.05);与Gal-H组比较,Gal-H+H-151组细胞增殖活力、迁移和侵袭能力均显著升高(均P<0.05),细胞凋亡率和cGAS、STING蛋白表达水平均显著降低(均P<0.05)。结论:Gal可能通过激活cGAS/STING信号通路抑制骨肉瘤MG63细胞增殖、迁移、侵袭并促进细胞凋亡。

12.
Nat Commun ; 14(1): 7707, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001112

ABSTRACT

Oral ulcer can be treated with diverse biomaterials loading drugs or cytokines. However, most patients do not benefit from these materials because of poor adhesion, short-time retention in oral cavity and low drug therapeutic efficacy. Here we report a self-stabilized and water-responsive deliverable coenzyme salt polymer poly(sodium α-lipoate) (PolyLA-Na)/coenzyme polymer poly(α-lipoic acid) (PolyLA) binary synergistic elastomer adhesive patch, where hydrogen bonding cross-links between PolyLA and PolyLA-Na prevents PolyLA depolymerization and slow down the dissociation of PolyLA-Na, thus allowing water-responsive sustainable delivery of bioactive LA-based small molecules and durable adhesion to oral mucosal wound due to the adhesive action of PolyLA. In the model of mice and mini-pig oral ulcer, the adhesive patch accelerates the healing of the ulcer by regulating the damaged tissue inflammatory environment, maintaining the stability of oral microbiota, and promoting faster re-epithelialization and angiogenesis. This binary synergistic patch provided a therapeutic strategy to treat oral ulcer.


Subject(s)
Oral Ulcer , Humans , Animals , Swine , Oral Ulcer/drug therapy , Polymers , Adhesives , Elastomers , Swine, Miniature
13.
Article in English | MEDLINE | ID: mdl-37878785

ABSTRACT

The insufficient cyclic efficiency and poor safety have prohibited the commercial applications of the lithium-metal anode because of its uncontrolled dendrite growth at the surface. A mechanically stable and highly ionic conductive solid electrolyte interphase (SEI) holds great promise to address the issues. Herein, a viable surface engineering approach is proposed for stabilizing the Li anode via a scalable artificial method. The surface of Li metal is functionalized by constructing a mechanically tough and electron-insulating metal-organic framework (MOF) of the MIL-125(Ti) layer. In-situ optical microscopy reveals its crucial role in inhibiting dendritic Li growth. Because of the intrinsic insulativity and highly ordered micropores of MIL-125(Ti), the Li+ ions acquire electrons under the coating layer, resulting in a uniform and dense Li deposition behavior. The symmetric cell of the MOF-modified Li electrode delivers a long life span of 2000 h with an overpotential of less than 20 mV at 0.5 mA cm-2. When paired with the same MOF-derived sulfur cathode, decent cycling retention is available as well. This work demonstrates a feasible strategy for the development of a stable Li-metal anode with alleviative dendritic growth.

14.
Cell ; 186(17): 3593-3605.e12, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37516107

ABSTRACT

Animal fertilization relies on hundreds of sperm racing toward the egg, whereas, in angiosperms, only two sperm cells are delivered by a pollen tube to the female gametes (egg cell and central cell) for double fertilization. However, unsuccessful fertilization under this one-pollen-tube design can be detrimental to seed production and plant survival. To mitigate this risk, unfertilized-gamete-controlled extra pollen tube entry has been evolved to bring more sperm cells and salvage fertilization. Despite its importance, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we report that, in Arabidopsis, the central cell secretes peptides SALVAGER1 and SALVAGER2 in a directional manner to attract pollen tubes when the synergid-dependent attraction fails or is terminated by pollen tubes carrying infertile sperm cells. Moreover, loss of SALs impairs the fertilization recovery capacity of the ovules. Therefore, this research uncovers a female gamete-attraction system that salvages seed production for reproductive assurance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/physiology , Fertilization , Pollen Tube , Seeds , Germ Cells, Plant
16.
Org Lett ; 25(27): 5134-5139, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37389553

ABSTRACT

Oxo-bridged dibenzoazocines are furnished within a single synthetic step at room temperature via ruthenium-catalyzed [4 + 3]-cycloannulation of aza-ortho-quinone methides with carbonyl ylides. Exclusive diastereoselectivity, excellent yield, mild reaction conditions, and broad substrate scope are distinguishing features of this protocol. The product could be prepared on a gram scale and could be further functionalized into diverse substituted dihydroisobenzofuran derivatives and a dibenzoazocine scaffold.


Subject(s)
Indolequinones , Ruthenium , Catalysis
17.
Plant Biotechnol J ; 21(9): 1757-1772, 2023 09.
Article in English | MEDLINE | ID: mdl-37221659

ABSTRACT

In angiosperms, the timely delivery of sperm cell nuclei by pollen tube (PT) to the ovule is vital for double fertilization. Penetration of PT into maternal stigma tissue is a critical step for sperm cell nuclei delivery, yet little is known about the process. Here, a male-specific and sporophytic mutant xt6, where PTs are able to germinate but unable to penetrate the stigma tissue, is reported in Oryza sativa. Through genetic study, the causative gene was identified as Chalcone synthase (OsCHS1), encoding the first enzyme in flavonoid biosynthesis. Indeed, flavonols were undetected in mutant pollen grains and PTs, indicating that the mutation abolished flavonoid biosynthesis. Nevertheless, the phenotype cannot be rescued by exogenous application of quercetin and kaempferol as reported in maize and petunia, suggesting a different mechanism exists in rice. Further analysis showed that loss of OsCHS1 function disrupted the homeostasis of flavonoid and triterpenoid metabolism and led to the accumulation of triterpenoid, which inhibits significantly α-amylase activity, amyloplast hydrolysis and monosaccharide content in xt6, these ultimately impaired tricarboxylic acid (TCA) cycle, reduced ATP content and lowered the turgor pressure as well. Our findings reveal a new mechanism that OsCHS1 modulates starch hydrolysis and glycometabolism through modulating the metabolic homeostasis of flavonoids and triterpenoids which affects α-amylase activity to maintain PT penetration in rice, which contributes to a better understanding of the function of CHS1 in crop fertility and breeding.


Subject(s)
Oryza , Pollen Tube , Pollen Tube/genetics , Flavonoids/metabolism , Oryza/metabolism , Plant Breeding , Seeds , Homeostasis , Starch/metabolism , alpha-Amylases/metabolism
18.
J Pept Sci ; 29(9): e3490, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36994602

ABSTRACT

Antimicrobial peptides (AMPs), a crucial part of the innate immune system, have been exploited as promising candidates for antibacterial agents. Many researchers have been devoting their efforts to develop novel AMPs in recent decades. In this term, many computational approaches have been developed to identify potential AMPs accurately. However, finding peptides specific to a particular bacterial species is challenging. Streptococcus mutans is a pathogen with an apparent cariogenic effect, and it is of great significance to study AMP that inhibit S. mutans for the prevention and treatment of caries. In this study, we proposed a sequence-based machine learning model, namely iASMP, to exactly identify potential anti-S. mutans peptides (ASMPs). After collecting ASMPs, the performances of models were compared by utilizing multiple feature descriptors and different classification algorithms. Among the baseline predictors, the model integrating the extra trees (ET) algorithm and the hybrid features exhibited optimal results. The feature selection method was utilized to remove redundant feature information to improve the model performance further. Finally, the proposed model achieved the maximum accuracy (ACC) of 0.962 on the training dataset and performed on the testing dataset with an ACC of 0.750. The results demonstrated that iASMP had an excellent predictive performance and was suitable for identifying potential ASMP. Furthermore, we also visualized the selected features and rationally explained the impact of individual features on the model output.


Subject(s)
Antimicrobial Peptides , Peptides , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Streptococcus mutans
19.
Tissue Cell ; 81: 102013, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36669387

ABSTRACT

OBJECTIVE: To explore whether nuclear factor I C (NFIC) alleviated inflammatory response of synovial fibroblasts (SFs) caused by rheumatoid arthritis (RA) by regulating transcription levels of phosphatase and tension homolog deleted on chromosome 10 (PTEN) and sentrin-specific protease 8 (SENP8). METHODS: NFIC, PTEN, and SENP8 levels in RASFs and normal SFs (NSFs) were measured by qRT-PCR and western blotting. The levels of Bax, Bcl-2, MMP-3, and MMP-13, as well as the content of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined in RASFs and NSFs using western blotting and ELISA. The binding of NFIC to promoter sequences of PTEN and SENP8 was predicted and verified. A mouse model of collagen-induced arthritis (CIA) was established and evaluated according to the degree of joint swelling and arthritis index. RESULTS: NFIC, PTEN, and SENP8 were downregulated in RASFs. RASFs had increased viability and MDA levels as well as decreased cell apoptosis and SOD content. NFIC was demonstrated to modulate the transcription of PTEN and SENP8 as their transcription factor. NFIC ameliorated the inflammatory response induced by RA in vivo by promoting the transcription of PTEN and SENP8. CONCLUSION: NFIC acted as a transcription factor to facilitate the transcription of PTEN and SENP8, thereby inducing apoptosis of RASFs and effectively attenuating inflammatory response in CIA mice.


Subject(s)
Arthritis, Rheumatoid , Synovial Membrane , Mice , Animals , NFI Transcription Factors/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/pharmacology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Cells, Cultured
20.
Bioact Mater ; 23: 80-100, 2023 May.
Article in English | MEDLINE | ID: mdl-36406250

ABSTRACT

White blood cells (WBCs) play essential roles against inflammatory disorders, bacterial infections, and cancers. Inspired by nature, WBC membrane-camouflaged nanocarriers (WBC-NCs) have been developed to mimic the "dynamic" functions of WBCs, such as transendothelial migration, adhesion to injured blood vessels, etc, which make them promising for diverse medical applications. WBC-NCs inherit the cell membrane antigens of WBCs, while still exhibiting the robust inflammation-related therapeutic potential of synthetic nanocarriers with excellent (bio)physicochemical performance. This review summarizes the proposed concept of cell membrane engineering, which utilizes physical engineering, chemical modification, and biological functionalization technologies to endow the natural cell membrane with abundant functionalities. In addition, it highlights the recent progress and applications of WBC-NCs for inflammation targeting, biological neutralization, and immune modulation. Finally, the challenges and opportunities in realizing the full potential of WBC-NCs for the manipulation of inflammation-related therapeutics are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL