Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Int J Neural Syst ; 34(8): 2450040, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38753012

ABSTRACT

Neonatal epilepsy is a common emergency phenomenon in neonatal intensive care units (NICUs), which requires timely attention, early identification, and treatment. Traditional detection methods mostly use supervised learning with enormous labeled data. Hence, this study offers a semi-supervised hybrid architecture for detecting seizures, which combines the extracted electroencephalogram (EEG) feature dataset and convolutional autoencoder, called Fd-CAE. First, various features in the time domain and entropy domain are extracted to characterize the EEG signal, which helps distinguish epileptic seizures subsequently. Then, the unlabeled EEG features are fed into the convolutional autoencoder (CAE) for training, which effectively represents EEG features by optimizing the loss between the input and output features. This unsupervised feature learning process can better combine and optimize EEG features from unlabeled data. After that, the pre-trained encoder part of the model is used for further feature learning of labeled data to obtain its low-dimensional feature representation and achieve classification. This model is performed on the neonatal EEG dataset collected at the University of Helsinki Hospital, which has a high discriminative ability to detect seizures, with an accuracy of 92.34%, precision of 93.61%, recall rate of 98.74%, and F1-score of 95.77%, respectively. The results show that unsupervised learning by CAE is beneficial to the characterization of EEG signals, and the proposed Fd-CAE method significantly improves classification performance.


Subject(s)
Electroencephalography , Seizures , Humans , Electroencephalography/methods , Infant, Newborn , Seizures/diagnosis , Seizures/physiopathology , Signal Processing, Computer-Assisted , Deep Learning , Unsupervised Machine Learning , Neural Networks, Computer
2.
Plant Physiol Biochem ; 206: 108300, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157835

ABSTRACT

Cryptochromes (CRYs), as blue-light photoreceptors, play a crucial role in regulating flowering time and hypocotyl and cotyledon development. Their physiological functions have been extensively studied in various plant species. However, research on onions remains limited. In this study, we identified AcCRY1 and conducted preliminary investigations into its function. Our results demonstrate that AcCRY1 possesses a conserved domain typical of cryptochromes with high homology to those found in monocots. Furthermore, we examined the expression level of AcCRY1 in onion. The green tissues is significantly higher compared to non-green tissues, and it exhibits a significant response to blue-light induction. AcCRY1 demonstrates cytoplasmic localization under blue-light conditions, while it localizes in the nucleus during darkness, indicating a strong dependence on blue-light for its subcellular distribution. In comparison to cry1, overexpression of AcCRY1 leads to a significant shorten in seedling hypocotyl length, notable expansion of cotyledons, and acceleration of flowering time. The yeast two-hybrid experiment demonstrated the in vitro interaction between AcCRY1, AcCOP1, and AcSPA1. Additionally, BIFC analysis confirmed their interaction in Onion epidermis. Notably, under blue-light conditions, a significantly enhanced binding activity was observed compared to dark conditions. These findings establish a functional foundation for the regulatory role of AcCRY1 in important physiological processes of onion and provide initial insights into the underlying molecular mechanisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Cryptochromes/genetics , Cryptochromes/metabolism , Onions/metabolism , Arabidopsis Proteins/metabolism , Blue Light , Photoperiod , Light , Transcription Factors/metabolism , Hypocotyl , Gene Expression Regulation, Plant
3.
Cell Signal ; 113: 110960, 2024 01.
Article in English | MEDLINE | ID: mdl-37977262

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease commonly found in middle-aged and older people. Chondrocytes are the only cells in joint cartilage that are difficult to heal after pyroptosis, and they will aggravate the wear and tear of joint cartilage and affect the progression of OA. Pyroptosis is a novel form of programmed cell death, and the classical pyroptosis pathway is a programmed cell death pattern mediated by inflammatory cysteine protease-1. Activation of NLRP3 leads to activation and cleavage of caspase-1 precursors, which in turn leads to activation and cleavage of GSDMD proteins and the release of proinflammatory factors. Resolvin D1 (RvD1) is a specialized pro-resolving mediator (SPM) derived from omega-3 unsaturated fatty acids that reduces inflammation and catabolic responses in OA chondrocytes. However, it is unclear whether RvD1 promotes OA chondrocyte proliferation and thus joint cartilage repair. Our results show that RvD1 regulates the NLRP3/caspase-1 signaling pathway by inhibiting the expression of caspase-1, promoting the proliferation of OA chondrocytes, promoting the repair of articular cartilage in rats and delaying the progression of osteoarthritis.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Osteoarthritis , Humans , Middle Aged , Rats , Animals , Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chondrocytes/metabolism , Caspase 1/metabolism , Osteoarthritis/metabolism , Signal Transduction , Cell Proliferation
4.
BMC Musculoskelet Disord ; 23(1): 149, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35168589

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a disease characterized by cartilage degradation and structural destruction. Resolvin D1 (RvD1), a specialized proresolving mediator (SPM) derived from omega-3 fatty acids, has been preliminarily proven to show anti-inflammatory and antiapoptotic effects in OA. However, the mechanisms of RvD1 in osteoarthritis fibroblast-like synoviocytes (OA-FLSs) need to be clarified. METHODS: Synovial and fibroblast-like synoviocytes were obtained from OA patients and healthy individuals. MTT and EdU assays were performed to determine cell cytotoxicity and proliferation. The protein expression levels of cyclin D1, cyclin B1, PCNA, p53, MMP-13, YAP, p-YAP, and LATS1 were detected by western blot analysis. The release levels of IL-1ß were detected by ELISA. The cell cycle was assessed by flow cytometry. Immunofluorescence was used to detect the levels of YAP in OA-FLSs. RESULTS: RvD1 inhibited OA-FLS proliferation and reduced MMP-13 and IL-1ß secretion in the concentrations of 20 nM and 200 nM. Furthermore, RvD1 induced G2 cell cycle arrest in OA-FLSs via the Hippo-YAP signaling pathway and promoted YAP phosphorylation. However, RvD1 had no effects on normal FLSs. CONCLUSIONS: RvD1 inhibits OA-FLS proliferation by promoting YAP phosphorylation and protects chondrocytes by inhibiting the secretion of MMP-13 and IL-1ß, providing an experimental basis for RvD1 treatment of OA.


Subject(s)
Osteoarthritis , Synoviocytes , Cell Proliferation , Cells, Cultured , Docosahexaenoic Acids , Fibroblasts , Humans , Osteoarthritis/drug therapy , Signal Transduction , Synovial Membrane
5.
J Orthop Surg Res ; 13(1): 25, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29394948

ABSTRACT

BACKGROUND: Nontraumatic osteonecrosis of the femoral head (ONFH) is treated with a series of methods. High-energy extracorporeal shock wave therapy (ESWT) is an option with promising mid-term outcomes. The objective of this study was to determine the long-term outcomes of ESWT for ONFH. METHODS: Fifty-three hips in 39 consecutive patients were treated with ESWT in our hospital between January 2005 and July 2006. Forty-four hips in 31 patients with stage I-III nontraumatic ONFH, according to the Association Research Circulation Osseous (ARCO) system, were reviewed in the current retrospective study. The visual analog pain scale (VAS), Harris hip score, radiography, and magnetic resonance imaging were used to estimate treatment results. The progression of ONFH was evaluated by imaging examination and clinical outcomes. The results were classified as clinical success (no progression of hip symptoms) and imaging success (no progression of stage or substage on radiography and MRI). RESULTS: The mean follow-up duration was 130.6 months (range, 121 to 138 months). The mean VAS decreased from 3.8 before ESWT to 2.2 points at the 10-year follow-up (p < 0.001). The mean Harris hip score improved from 77.4 before ESWT to 86.9 points at the 10-year follow-up. The clinical success rates were 87.5% in ARCO stage I patients, 71.4% in ARCO stage II patients, and 75.0% in ARCO stage III patients. Imaging success was observed in all stage I hips, 64.3% of stage II hips, and 12.5% of stage III hips. Seventeen hips showed progression of the ARCO stage/substage on imaging examination. Eight hips showed femoral head collapse at the 10-year follow-up. Four hips in ARCO stage III and one hip in ARCO stage II were treated with total hip arthroplasty during the follow-up. Three were performed 1 year after ESWT, one at 2 years, and one at 5 years. CONCLUSIONS: The results of the current study indicated that ESWT is an effective treatment method for nontraumatic ONFH, resulting in pain relief and function restoration, especially for patients with ARCO stage I-II ONFH.


Subject(s)
Extracorporeal Shockwave Therapy/methods , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/therapy , Pain Measurement/methods , Adult , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
6.
Comput Biol Chem ; 65: 16-20, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27694041

ABSTRACT

OBJECTIVE: This paper aimed to investigate ego modules for TGFß3-induced chondrogenesis in mesenchymal stem cells (MSCs) using ego network algorithm. METHODS: The ego network algorithm comprised three parts, extracting differential expression network (DEN) based on gene expression data and protein-protein interaction (PPI) data; exploring ego genes by reweighting DEN; and searching ego modules by ego gene expansions. Subsequently, permutation test was carried out to evaluate the statistical significance of the ego modules. Finally, pathway enrichment analysis was conducted to investigate ego pathways enriched by the ego modules. RESULTS: A total of 15 ego genes were obtained from the DEN, such as PSMA4, HNRNPM and WDR77. Starting with each ego genes, 15 candidate modules were gained. When setting the thresholds of the area under the receiver operating characteristics curve (AUC) ≥0.9 and gene size ≥4, three ego modules (Module 3, Module 8 and Module 14) were identified, and all of them had statistical significances between normal and TGFß3-induced chondrogenesis in MSCs. By mapping module genes to confirmed pathway database, their ego pathways were detected, Cdc20:Phospho-APC/C mediated degradation of Cyclin A for Module 3, Mitotic G1-G1/S phases for Module 8, and mRNA Splicing for Module 14. CONCLUSIONS: We have successfully identified three ego modules, evaluated their statistical significances and investigated their functional enriched ego pathways. The findings might provide potential biomarkers and give great insights to reveal molecular mechanism underlying this process.


Subject(s)
Chondrogenesis/physiology , Mesenchymal Stem Cells/cytology , Transforming Growth Factor beta3/physiology , Gene Expression Profiling , Humans
7.
J Lasers Med Sci ; 5(2): 75-81, 2014.
Article in English | MEDLINE | ID: mdl-25653803

ABSTRACT

INTRODUCTION: Pulsed dye laser (PDL) is an important treatment for superficial infantile hemangioma, but few studies report on its cellular mechanism. The aim of this study was to evaluate alterations of serum vascular endothelial growth factor (VEGF) level in infantile hemangioma (IH) patients after laser treatment and effects of PDL irradiation on human umbilical vein endothelial cells (HUVECs) in vitro, as well as to explore the biomolecular mechanisms and ultrastructure changes of the PDL effect. METHODS: 74 children with infant hemangioma including 45 patients in proliferating phase, 18 patients in involuting phase, 11 patients in involuted phase and 10 healthy children were engaged in this study. The plasma VEGF levels of children were measured with the enzymelinked immunosorbent assay (ELISA). 24 hours after, HUVECs cultured in vitro were irradiated with PDL, cell apoptosis, mRNA levels of VEGF, and changes of ultrastructure were evaluated using flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR), and transmission electron microscopy, respectively. RESULTS: The serum VEGF concentrations in children with proliferating hemangiomas were significantly higher than in patients with involuting / involved hemangiomas and healthy patients. After receiving 3 laser treatments, the plasma VEGF levels of IH patients in proliferating hemangiomas decreased significantly. PDL irradiation could down-regulate VEGF mRNA expression of HUVECs, and increase cell apoptosis rate. CONCLUSION: The present study demonstrates that PDL irradiation imparts apoptosis induction effects on HUVECs in vitro. Furthermore, our results suggest that vascular endothelial growth factor may be of particular importance in pathophysiology and PDL treatment of hemangiomas, also serum VEGF levels may be used as an aid in the follow up of IH. This provides valuable evidence of the PDL effect on infantile hemangioma.

8.
Article in Chinese | MEDLINE | ID: mdl-16206769

ABSTRACT

OBJECTIVE: To observe the biological characters of chondrocytes in articular loose body and to find out seeding cells for cartilage tissue engineering. METHODS: Samples from 5 loose body cartilages, 2 normal articular cartilages and 6 osteoarthritis articular cartilages were collected. Part of each sample's cartilage was histologically studied to observe the chondrocytes distribution the morphologic changes by toluidine-blue staining, chondrocytes' apoptosis by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL). The rest of each cartilage was digested and isolated by 0.25% trypsin and 0. 2% collagenase II, and then were cultivated in 10%DMEM. Their morphologic changes were observed 24h later. Comparison was made between three cartilages. RESULTS: Compared with normal cartilage and osteoarthritis articular cartilage, the cells density was higher, their lacunary were larger, cells distribution was irregular, and apoptosis was more apparent in loose body cartilage. CONCLUSION: The characters of chondrocytes from loose body is more like fibroblasts so they can not serve as seeding cells directly for cartilage tissue engineering.


Subject(s)
Chondrocytes/pathology , Joint Loose Bodies/pathology , Tissue Engineering , Adult , Aged , Apoptosis , Cartilage, Articular/pathology , Cells, Cultured , Female , Humans , Male , Middle Aged
9.
Zhonghua Yi Xue Za Zhi ; 85(22): 1521-5, 2005 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-16179108

ABSTRACT

OBJECTIVE: To investigate the effects of bone morphogenetic protein-2 (BMP-2) gene therapy on the bone-implant interface in the reconstruction of periprosthetic bone defect. METHODS: Transverse defects were caused in the external condylae of both femurs of 14 adult Beagle dogs. Titanium alloy implants were inserted and a bone defect 3 mm wide around the titanium alloy implant was preserved. Then the total 28 defects were divided into 4 groups: 8 bone defects remained untreated (blank control group); 8 bone defects were implanted with heterogeneous freeze-dried bone by impaction grafting technique (non-cell group); 8 bone defects were implanted with heterogeneous freeze-dried bone loaded with autogenous bone marrow stromal cells (BMSCs) from the greater trochanter of the same dog (cell group); and 10 bone defects were implanted with freeze-dried allograft loaded with autogenous BMSCs from the greater trochanter of the same dog which were transfected by Adv-BMP-2 gene (gene group). Three, 6, and 12 weeks after implantation X-ray examination was carried out to observe the place of the implant and the absorption of the implants. Six and 12 weeks after the dogs were killed and their bone defects were taken out to undergo histological, histomorphometric and biomechanical examination to observe the healing and oseeointegration of the bone-implant interface. RESULTS: Histological examination showed that 6 weeks after implantation new bone formation was found on the implant surface and there was point contact between the bone and implant in the gene group with the bone-to-impact contact (BIC) of about 10%; and continuous soft tissue was found at bone-implant interface in all other groups. Twelve weeks after, there was thick soft tissue membrane between the new bone and implant in the blank control group; most of the interface was connective fibrous tissue in the non-cell group and cell group with point contact between the bone and implant and a BIC lower than 10%; and in the gene group the interface consisted mainly of bone tissue and continuous bone-implant contact was found with the BIC of 50%, significantly higher than those of the other 2 groups (both P < 0.01). The mechanical strength of interface increased time-dependently in all groups, that of the gene group being significantly higher than those of the other 2 groups at any time-points (both P < 0.01). CONCLUSION: BMP-2 gene therapy can improve the osseointegration of bone-implant interface.


Subject(s)
Bone Morphogenetic Proteins/genetics , Genetic Therapy , Osseointegration/drug effects , Prostheses and Implants , Transforming Growth Factor beta/genetics , Animals , Bone Marrow Cells/cytology , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/therapeutic use , Bone Regeneration/drug effects , Bone Transplantation , Cells, Cultured , Dogs , Femur/injuries , Implants, Experimental , Male , Stromal Cells/cytology , Transforming Growth Factor beta/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...