Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Front Med (Lausanne) ; 11: 1355236, 2024.
Article in English | MEDLINE | ID: mdl-38725467

ABSTRACT

Purpose: Prostate-specific membrane antigen (PSMA)-targeted imaging has gained increasing interest in its application in prostate cancer lesion detection. Compared with 68Galium (68Ga), 18Fluoride (18F)-labeled imaging agent has easier syntheses, lower price, and a longer half-time. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid positron emission tomography (18F-DCFPyL PET) has been recently approved by the U.S. Food and Drug Administration. Several studies have proven its superiority to conventional imaging techniques in detecting prostate cancer lesions. However, the impact of 18F-DCFPyL PET on the management of patients with prostate cancer is not well established. Thus, we performed a systematic review and meta-analysis of available data to evaluate the impact of 18F-DCFPyL PET on the management of patients with prostate cancer. Methods: The PubMed, Embase, Scopus, and Cochrane databases were searched up to April 2024. Studies that reported the proportion of changes in management after 18F-DCFPyL PET was performed in patients with prostate cancer were included. The Grading of Recommendations Assessment, Development, and Evaluation system was used for the quality evaluation of the included studies. The proportion of changes in management was pooled using a random effects model. Meta-regression analyses were performed to assess the potential correlation between the PET positivity and management changes. Results: Fourteen studies (3,078 patients with prostate cancer) were included in our review and analysis. The pooled percentage of management changes was 43.5% (95% confidence interval [CI]: 33-54%). In patients with biochemical recurrent and for primary staging, the pooled percentage was 50% (95% CI: 39-60%) and 22% (95% CI: 15-29%), respectively. In the meta-regression analyses, PET positivity was detected as a significant predictor of management change (p = 0.0023). Conclusion: 18F-DCFPyL PET significantly affects the management of patients with prostate cancer. Higher PET positivity rate significantly correlated with a higher proportion of management changes in patients with prostate cancer. However, more studies are still needed to confirm the important role of 18F-DCFPyL PET in the management of prostate cancer. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#myprospero, CRD42022339178.

2.
Front Oncol ; 14: 1384109, 2024.
Article in English | MEDLINE | ID: mdl-38725632

ABSTRACT

High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein with a dual role in cancer, acting as an oncogene and a tumor suppressor. This protein regulates nucleosomal structure, DNA damage repair, and genomic stability within the cell, while also playing a role in immune cell functions. This review comprehensively evaluates the biological and clinical significance of HMGB1 in cancer, including its involvement in cell death and survival, its potential as a therapeutic target and cancer biomarker, and as a prosurvival signal for the remaining cells after exposure to cytotoxic anticancer treatments. We highlight the need for a better understanding of the cellular markers and mechanisms involved in the involvement of HMGB1in cancer, and aim to provide a deeper understanding of its role in cancer progression.

3.
Front Plant Sci ; 15: 1385980, 2024.
Article in English | MEDLINE | ID: mdl-38693926

ABSTRACT

Resource-based water shortages, uncoordinated irrigation, and fertilization are prevalent challenges in agricultural production. The scientific selection of appropriate water and fertilizer management methods is important for improving the utilization efficiency of agricultural resources and alleviating agricultural non-point source pollution. This study focused on wolfberry and compared the effects of four irrigation levels [full irrigation (W0, 75%-85% θf), slight water deficit (W1, 65%-75% θf), moderate water deficit (W2, 55%-65% θf), and severe water deficit (W3, 45%-55% θf)] and four nitrogen application levels [no nitrogen application (N0, 0 kg·ha-1), low nitrogen application (N1, 150 kg·ha-1), medium nitrogen application (N2, 300 kg·ha-1), and high nitrogen application (N3, 450 kg·ha-1)] on soil nitrate nitrogen (NO3 --N) transport, plant nitrogen allocation, and soil nitrous oxide (N2O) emissions during the harvest period of wolfberry. And this study used CRITIC-entropy weights-TOPSIS model to evaluate 16 water and nitrogen regulation models comprehensively. The results revealed the following: (1) The NO3 --N content of the soil decreased with increasing horizontal distance from the wolfberry. It initially decreased, then increased, and finally decreased with an increase in soil depth. The average NO3 --N content in the 0-100 cm soil layer ranged from 3.95-13.29 mg·kg-1, indicating that W0 > W1, W2, W3, and N3 > N2 > N1 > N0. (2) The soil NO3 --N accumulation ranged from 64.45-215.27 kg·ha-1 under varying water and nitrogen levels, demonstrating a decreasing trend with increasing horizontal distance. The NO3 --N accumulation at each horizontal distance increased with increasing irrigation and nitrogen application. The NO3 --N accumulation of W0N3 treatment increased by 5.55%-57.60% compared with the other treatments. (3) The total nitrogen content and nitrogen uptake in all wolfberry organs were W1 > W0 > W2 > W3, and N2 > N3 > N1 > N0. The maximum total nitrogen content and nitrogen uptake in W1N2 treatment were 3.25% and 27.82 kg·ha-1 in the roots, 3.30% and 57.19 kg·ha-1 in the stems, 3.91% and 11.88 kg·ha-1 in the leaves, and 2.42% and 63.56 kg·ha-1 in the fruits, respectively. (4) The emission flux and total emission of N2O increased with increasing irrigation and nitrogen application. The emission flux exhibited a transient peak (116.39-177.91 ug·m-2·h-1) after irrigation. The intensity of N2O emissions initially decreased and then increased with an increase in the irrigation amount. It also initially increased with increasing nitrogen application amount, then decreased, and finally increased again. The maximum emission intensity was observed under the W3N3 treatment (0.23 kg·kg-1). The N2O emission coefficients ranged from 0.17%-0.39%, in the order of W0 > W1 > W2 > W3 (except for N1) and N1 > N2 > N3. (5) Under varying water and nitrogen concentrations, N2O emission flux showed a positive linear correlation with soil pore water content and NO3 --N content and a negative linear correlation with soil temperature. The comprehensive evaluation revealed that a slight water deficit (65%-75% θf) combined with medium nitrogen application (300 kg·ha-1) decreased soil NO3 --N leaching, increased nitrogen uptake, and reduced N2O emission. These findings can serve as a reference for improving the efficiency and reducing emissions of wolfberry in the Yellow River irrigation region of Gansu Province and in similar climate zones.

4.
Front Neurol ; 15: 1374093, 2024.
Article in English | MEDLINE | ID: mdl-38685948

ABSTRACT

Background: Mechanical thrombectomy (MT) is one of the effective treatment methods for acute ischemic stroke (AIS), which requires a period of dual antiplatelet therapy (DAPT) after endovascular treatment. This study aimed to compare the efficacy and safety of 3-month DAPT and 1-month DAPT in AIS patients receiving MT through a retrospective study. Methods: AIS patients who received MT from May 2018 to March 2023 were grouped into a 1-month group (1-M group) and a 3-month group (3-M group) according to the duration of DAPT after MT. The primary outcome was the mRS score at 90 days. Secondary outcomes included a good prognosis (mRS score of 0-2) at 90 days post-surgery, 6-month mortality, recurrence of cerebral infarction, Barthel's index, Montreal Cognitive Assessment (MoCA) score, and incidence of symptomatic intracranial hemorrhage (sICH) during hospitalization. Result: A total of 147 patients with AIS were included in the final analysis, with 78 patients in the 1-M group and 69 patients in the 3-M group. The baseline and neurological characteristics were comparable between both groups. At 3-month follow-up, a total of 61 patients had an mRS of 0-2 at 90 days, with an average mRS of 3.3 ± 0.9 for all patients. There was no statistically significant difference in the mRS between the two groups of patients at 90 days (P > 0.05). There was no statistically significant difference in the mortality rate and incidence of sICH between the two groups of patients during the 6-month follow-up period (P > 0.05), but the recurrence rate of AIS in the 3-M group was lower than that in the 1-M group (P < 0.05). The improvement of Barthel index and MoCA in patients in the 3-M group was higher than those in the 1-M group at 6 months but not statistically different (P > 0.05). Conclusion: For AIS patients undergoing mechanical thrombectomy, compared to 1-month DAPT, 3-month DAPT can reduce the recurrence rate of IS during a 6-month follow-up period, without increasing the mortality and risk of cerebral hemorrhage.

5.
Plants (Basel) ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674504

ABSTRACT

In the production of economic forests, there are common issues such as excessive application of water and fertilizer, redundant plant growth, and low economic benefits. Reasonable water and fertilizer management can not only help address these problems but also improve the absorption and use efficiency of water and fertilizer resources by plants, promoting the green and efficient development of the fruit and forestry industry. In order to explore a suitable water and nitrogen management mode for Lycium barbarum, field experiments were conducted in this study from 2021 to 2022. Specifically, four irrigation modes (according to the proportion ratio of soil moisture content to field moisture capacity θf, 45-55% θf (W1, severe water deficiency), 55-65% θf (W2, moderate water deficiency), 65-75% θf (W3, mild water deficiency), and 75-85% θf (W4, sufficient irrigation)) and four nitrogen application levels (0 kg·ha-1 (N0, no nitrogen application), 150 kg·ha-1 (N1, low nitrogen application level), 300 kg·ha-1 (N2, medium nitrogen application level), and 450 kg·ha-1 (N3, high nitrogen application level)) were set up to analyze the influences of water and nitrogen control on the plant height, stem diameter, chlorophyll content, photosynthetic characteristics and yield, and economic benefits of Lycium barbarum in the Lycium barbarum + Alfalfa system. The study results show that the plant height and stem diameter increment of Lycium barbarum increase with the irrigation amount, increasing first and then decreasing with the increase in the nitrogen application level. Meanwhile, the chlorophyll contents in Lycium barbarum continuously increase throughout their growth periods, with Lycium barbarum treated with W4N2 during all growth periods presenting the highest contents of chlorophyll. In a Lycium barbarum + Alfalfa system, the daily variation curve of the Lycium barbarum net photosynthetic rate presents a unimodal pattern, with maximum values of the daily average net photosynthetic rate and daily carboxylation rate appearing among W4N2-treated plants (19.56 µmol·m-2·s-1 and 157.06 mmol·m-2·s-1). Meanwhile, the transpiration rates of Lycium barbarum plants continuously decrease with the increased degree of water deficiency and decreased nitrogen application level. W1N2-treated plants exhibit the highest leaf daily average water use efficiency (3.31 µmol·s-1), presenting an increase of 0.50-10.47% in efficiency compared with plants under other treatments. The coupling of water and nitrogen has significantly improved the yields and economic benefits of Lycium barbarum plants, with W4N2-treated and W3N2-treated plants presenting the highest dried fruit yield (2623.07 kg·ha-1) and net income (50,700 CNY·ha-1), respectively. Furthermore, compared with other treatment methods, these two treatment methods (W4N2 and W3N2) exhibit increases of 4.04-84.08% and 3.89-123.35% in dried fruit yield and net income indexes, respectively. Regression analysis shows that, in a Lycium barbarum + Alfalfa system, both high yields and economic benefits of Lycium barbarum plants can be achieved using an irrigation amount of 4367.33-4415.07 m3·ha-1 and a nitrogen application level of 339.80-367.35 kg·ha-1. This study can provide a reference for improving the productivity of Lycium barbarum plants and achieving a rational supply of water and nitrogen in Lyciun barbarum + Alfalfa systems in the Yellow River Irrigation Area of Gansu, China, and other similar ecological areas.

6.
Nat Commun ; 15(1): 2415, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499520

ABSTRACT

Phenols and anilines are of extreme importance for medicinal chemistry and material science. The development of efficient approaches to prepare both compounds has thus long been a vital research topic. The utility of phenols and anilines directly reflects the identity and pattern of substituents on the benzenoid ring. Electrophilic substitutions remain among the most powerful synthetic methods to substituted phenols and anilines, yet in principle achieving ortho- and para-substituted products. Therefore, the selective preparation of meta-substituted phenols and anilines is the most significant challenge. We herein report an efficient copper-catalyzed dehydrogenation strategy to exclusively synthesize meta-carbonyl phenols and anilines from carbonyl substituted cyclohexanes. Mechanistic studies indicate that this transformation undergoes a copper-catalyzed dehydrogenation/allylic hydroxylation or amination/oxidative dehydrogenation/aromatization cascade process.

7.
Anal Methods ; 16(12): 1785-1792, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38421231

ABSTRACT

One of the most crucial and prevalent post-translational modifications is the phosphorylation of proteins. The study and examination of protein phosphorylation hold immense importance in comprehending disease mechanisms and discovering novel biomarkers. However, the inherent low abundance, low ionization efficiency, and coexistence with non phosphopeptides seriously affect the direct analysis of phosphopeptides by mass spectrometry. In order to tackle these problems, it is necessary to carry out selective enrichment of phosphopeptides prior to conducting mass spectrometry analysis. Herein, magnetic chitosan nanoparticles were developed by incorporating arginine, and were then utilized for phosphopeptide enrichment. A tryptic digest of ß-casein was chosen as the standard substance. After enrichment, combined with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), the detection limit of the method was 0.4 fmol. The synthesized magnetic material demonstrated great potential in the detection of phosphopeptides in complex samples, as proven by its successful application in detecting phosphopeptides in skim milk and human saliva samples.


Subject(s)
Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Phosphopeptides/analysis , Phosphopeptides/chemistry , Caseins , Nanoparticles/chemistry , Magnetic Phenomena
8.
J Chromatogr A ; 1719: 464752, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38382211

ABSTRACT

As one of the most common post-translational modification of proteins, protein phosphorylation plays a vital role in many physiological processes. The enrichment of phosphopeptides is highly important before the mass spectrometry detection since phosphopeptides are susceptible to interferences from high-abundance non-phosphopeptides. In this study, we designed a novel magnetic composite (Fe3O4@PDA-PEI-Fe3+) for phosphopeptide enrichment with a facile protocol. The developed Fe3O4@PDA-PEI-Fe3+ is a marvelous material with multiple functional groups, and can effectively enrich phosphopeptides through the synergistic effect of three mechanisms, i.e., immobilized metal ion affinity chromatography raised form Fe3+, electrostatic interaction between amine and phosphate groups, and hydrogen bond between the hydrogen atoms of amine groups and oxygen atoms of phosphate groups. Combined with mass spectrometry, the material shows excellent enrichment performance, high sensitivity (0.4 fmol), good selectivity (ß-casein:BSA= 1:500, w:w), and stable reusability (at least 5 cycles). In addition, the material was successfully applied to enrich phosphopeptides from skim milk and human saliva samples, implying that it is an ideal adsorbent for the phosphopeptide enrichment in complex biological samples and provides valuable insights into the field of phosphopeptide analysis.


Subject(s)
Indoles , Phosphopeptides , Polyethyleneimine , Polymers , Humans , Phosphopeptides/analysis , Magnetic Phenomena , Chromatography, Affinity/methods , Phosphates , Amines , Titanium/chemistry
9.
Microbiol Spectr ; 12(4): e0342723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38393320

ABSTRACT

Plant cultivation can influence the immobilization of heavy metals in soil. However, the roles of soil amendments and microorganisms in crop-based phytoremediation require further exploration. In this study, we evaluated the impact of Zea mays L. cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation on soil lead (Pb) immobilization. Our results indicated that biochar addition resulted in a significant, 42.00%, reduction in AMF colonization. Plant cultivation, AMF inoculation, and biochar addition all contributed to enhanced Pb immobilization, as evidenced by decreased levels of diethylenetriaminepentaacetic acid- and CaCl2-extractable Pb in the soil. Furthermore, soil subjected to plant cultivation with AMF and biochar displayed reduced concentrations of bioavailable Pb. Biochar addition altered the distribution of Pb fractions in the soil, transforming the acid-soluble form into the relatively inert reducible and oxidizable forms. Additionally, biochar, AMF, and their combined use promoted maize growth parameters, including height, stem diameter, shoot and root biomass, and phosphorus uptake, while simultaneously reducing the shoot Pb concentration. These findings suggest a synergistic effect in Pb phytostabilization. In summary, despite the adverse impact of biochar on mycorrhizal growth, cultivating maize with the concurrent use of biochar and AMF emerges as a recommended and effective strategy for Pb phytoremediation.IMPORTANCEHeavy metal contamination in soil is a pressing environmental issue, and phytoremediation has emerged as a sustainable approach for mitigating this problem. This study sheds light on the potential of maize cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation to enhance the immobilization of Pb in contaminated soil. The findings demonstrate that the combined use of biochar and AMF during maize cultivation can significantly improve Pb immobilization and simultaneously enhance maize growth, offering a promising strategy for sustainable and effective Pb phytoremediation practices. This research contributes valuable insights into the field of phytoremediation and its potential to address heavy metal pollution in agricultural soils.


Subject(s)
Charcoal , Metals, Heavy , Mycorrhizae , Soil Pollutants , Zea mays/microbiology , Plant Roots/microbiology , Lead , Soil
10.
Int J Biol Macromol ; 260(Pt 2): 129656, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253144

ABSTRACT

Herein, we attempted to confine copper nanoclusters (CuNCs) with alumina (Al2O3) as the matrix (Al2O3@CuNCs), which effectively circumvented the drawbacks of CuNCs (such as weak photoluminescence and low quantum yield). Al2O3@CuNCs demonstrated sensitive response to p-nitrophenol, the catalytic product of N-acetyl-ß-D-glucosaminidase (NAG) on account of the inner filter effect and dynamic quenching effect. In light of this, a novel assay was created to identify NAG, a critical indicator of diabetic nephropathy. Additionally, a portable and instrument-free sensing platform mainly consisting of a smartphone, a cuvette, a cuvette holder, a dark box and a 365 nm UV lamp was developed for the quantitative detection of NAG. The as-prepared material was also utilized in anti-counterfeiting and information encryption based on their excellent optical properties and sensitive response to the catalyzed product of NAG. This work advanced potential applications of CuNCs composites in the areas of portable, multi-mode biosensing, anti-counterfeiting and information encryption.


Subject(s)
Copper , Hexosaminidases , Microspheres
11.
Food Funct ; 15(3): 1417-1430, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38224157

ABSTRACT

This study investigated the non-inferiority of feeding term healthy infants with enriched formula milk powder containing 1,3-dioleoyl-2-palmitoylglycerol (OPO) and milk fat globular membrane (MFGM), compared to breast milk, in terms of the formation of gut microbiota, neurodevelopment and growth. Infants were divided into three groups: breast milk group (BMG, N = 50), fortified formula group (FFG, N = 17), and regular formula group (RFG, N = 12), based on the feeding pattern. Growth and development information was collected from the infants at one month, four months, and six months after the intervention. Fecal samples were collected from infants and analyzed for gut microbiota using 16S ribosomal DNA identification. The study found that at the three time points, the predominant bacterial phyla in FFG and BMG were Proteobacteria, Firmicutes, and Bacteroidetes, which differed from RFG. The abundance of Bifidobacterium in the RFG was lower than the FFG (one month, p = 0.019) and BMG (four months, p = 0.007). The abundance of Methanoprebacteria and so on (genus level) are positively correlated with bone mineral density (BMD) of term infants, and have the potential to be biomarkers for predicting BMD. The abundance of beta-galactosidase, a protein that regulates lactose metabolism and sphingoid metabolism, was higher in FFG (six months, p = 0.0033) and BMG (one month, p = 0.0089; four months, p = 0.0005; six months, p = 0.0005) than in the RFG group, which may be related to the superior bone mineral density and neurodevelopment of infants in the FFG and BMG groups than in the RFG group. Our findings suggest that formula milk powder supplemented with OPO and MFGM is a viable alternative to breastfeeding, providing a practical alternative for infants who cannot be breastfed for various reasons.


Subject(s)
Breast Feeding , Gastrointestinal Microbiome , Infant , Female , Humans , Powders , Infant Formula , Milk, Human , Feces/microbiology
12.
J Mater Chem B ; 12(6): 1550-1557, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38251966

ABSTRACT

Herein, a fluorometric and colorimetric dual-mode assay platform used for α-glucosidase (α-Glu) activity sensing based on aggregation-induced emission enhancement (AIEE) of AuNCs was developed for the first time. The quantum yield (QY) and fluorescence lifetime of AuNCs were successfully ameliorated by Ce3+-triggered AIEE (Ce@AuNCs). Subsequently, on the basis of the inner filter effect (IFE) and dynamic quenching effect (DQE) between 2,6-dichlorophenolindophenol (DCIP) and Ce@AuNCs as well as the reduction of DCIP by ascorbic acid (AA) generated from α-Glu-catalyzed hydrolysis of L-ascorbic acid-2-O-α-D-glucopyranosyl (AA2G), the marriage of fluorometric and colorimetric modes applied for α-Glu activity monitoring was achieved. Besides, the feasibility of this dual-mode sensing system was confirmed by the assays versus potential interfering substances and in real samples. In particular, this system was further applied to evaluate natural α-Glu inhibitors (AGIs) including luteolin, apigenin, and hesperidin. Overall, the multi-mode optical sensor newly designed here has the potential for the accurate discovery of natural anti-diabetes drugs and the therapy of diabetes.


Subject(s)
Metal Nanoparticles , alpha-Glucosidases , Colorimetry , Limit of Detection , Fluorometry
13.
J Chromatogr A ; 1716: 464635, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38215543

ABSTRACT

Food allergy can lead to severe allergic reactions that are potentially fatal for human, hence the detection of food allergens such as ovalbumin (OVA) is important. In this study, a poly(caffeic acid)-coated epitope molecularly imprinted polymer (EMIP) was prepared by chelation and autoxidation of caffeic acid with hexamethylenediamine. EMIP has not only imprinted cavities highly matched with OVA in size and spatial structure, but also externally abundant hydrophilic groups, resulting in few non-specific binding and good hydrophilicity. With high specificity, significant paramagnetism, and great reusability, EMIP can distinguish OVA from other proteins and selectively enrich OVA in egg white samples, which opens up a promising route to the determination of allergens in food products.


Subject(s)
Caffeic Acids , Molecular Imprinting , Molecularly Imprinted Polymers , Humans , Ovalbumin , Epitopes , Polymers/chemistry , Adsorption
14.
Se Pu ; 41(10): 891-900, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875411

ABSTRACT

Mycotoxins are a class of toxic secondary metabolites produced by fungi. These substances are carcinogenic, teratogenic, and mutagenic, and cause serious harm to the human body; thus, they have attracted wide attention worldwide. Establishing accurate, rapid, and sensitive methods for the detection of mycotoxins is of great significance. Chromatography is a commonly used technology for mycotoxin detection. However, it is challenging to use in the direct analysis of these metabolites because of the wide variety and distribution of mycotoxins, their complex sample matrix, and their very low content in actual samples. Therefore, the development of suitable sample pretreatment methods for the efficient separation and enrichment of mycotoxins is necessary. In recent years, porous organic framework materials, which are represented by metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), have been widely applied in the sample pretreatment of mycotoxins owing to their many advantages, which include a large specific surface area, high porosity, adjustable pore size, diverse frame structures, uniform active site distribution, and modifiable structures. In addition, MOF/COF materials feature excellent fluorescence and electrochemical properties, rendering them highly suitable for mycotoxin analysis and sensing. In this article, the recent applications of MOF/COF materials in conventional sample pretreatment methods (e. g., solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, and immunomagnetic bead separation) for mycotoxin separation and enrichment are reviewed. Research on the use of MOF/COF materials for the fluorescence and electrochemical sensing of mycotoxins is also summarized. Finally, the existing challenges and future development trends of these materials are discussed and prospected to provide a reference for future research on the applications of MOF/COF materials in mycotoxin detection and analysis.


Subject(s)
Metal-Organic Frameworks , Mycotoxins , Humans , Carcinogens , Porosity , Solid Phase Extraction
15.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2421-2428, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37899108

ABSTRACT

Research on the processes and mechanisms of compound soil erosion by multiple forces can provide scientific guidance for precisely controlling cropland soil erosion. Based on the seasonal alternation of freezing-thawing, snowmelt, wind, and rainfall erosion forces on sloping farmlands under natural conditions from November to next October of each year, we used a set of indoor simulation experiments of multi-force superimpositions to analyze the compound soil erosion processes of snowmelt (1 and 2 L·min-1), wind (12 m·s-1), and rainfall (100 mm·h-1). We further discussed the erosion effects of multi-force superimpositions. The results showed that, under single snowmelt erosion, an increase in snowmelt flow had a greater effect on sloping snowmelt erosion intensity than that of sloping runoff rate. When sloping snowmelt flow increased from 1 L·min-1 to 2 L·min-1, sloping runoff rate and erosion intensity increased by 2.7 and 4.0 times, respectively. Under snowmelt-wind superimposition erosion, previous sloping snowmelt erosion inhibited late wind erosion occurrence. As sloping snowmelt flow increased from 1 L·min-1 to 2 L·min-1, the inhibiting action subsequently increased and wind erosion intensity caused by previous snowmelt reduced by more than 50%. Both wind erosion and snowmelt-wind superimposed erosion intensified late rainfall erosion. The early wind erosion increased rainfall erosion by 24.5%. The snowmelt-wind superimposed effect increased the later slope rainfall erosion by 132.8% and 465.4% under 1 and 2 L·min-1 snowmelt runoff rates, respectively. The compound soil erosion amount driven by multiple force superimposition was not the sum of the corresponding erosion amount caused by single erosion force, with promoting or inhibiting effects of erosion force superimposition. The erosion effect of snowmelt-wind superposition was negative, but that of wind-rainfall superposition and snowmelt-wind-rainfall superpositions were positive.


Subject(s)
Farms , Rain , Snow , Soil Erosion , Soil , Wind , China , Geologic Sediments , Water Movements
16.
ACS Macro Lett ; 12(10): 1358-1364, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37733801

ABSTRACT

Porous organic polymers (POPs) have demonstrated promising task-specific applications due to their structure designability and thus functionality. Herein, an unusual 3,4-polymerization on 1,2,5-trisubstituted pyrroles has been developed to give linear polypyrrole-3,4 in high efficiency, with Mn of 20000 and PDI of 1.7. This novel polymerization technique was applied to prepare a series of polypyrrole-based POPs (PY-POP-1-4), which exhibited high BET surface areas (up to 762 m2 g-1) with a meso-micro-supermicro hierarchically porous structure. Furthermore, PY-POPs were doped in the mixed matrix membranes based on the polysulfone matrix to enhance the gas permeability and gas pair selectivity, with H2/N2 selectivity up to 84.6 and CO2/CH4 and CO2/N2 selectivity up to 46.8 and 39.6.

17.
Anal Chem ; 95(23): 9043-9051, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37262441

ABSTRACT

Smart materials can dynamically and reversibly change their structures and functions in response to external stimuli. In this study, we designed a smart magnetic composite (MNP-pSPA-b-pNIPAm) with a triple response to ultraviolet (UV) light, pH, and temperature. Relying on the response of spiropyranyl acrylate (SPA) and N-isopropylacrylamide (NIPAm) to external stimuli (light, pH, and temperature), MNP-pSPA-b-pNIPAm was used for the controlled capture and release of phosphopeptides. The established phosphopeptide enrichment platform exhibits high sensitivity (detection limit of 0.04 fmol), high selectivity (BSA/ß-casein, 1000:1), and good reusability (6 cycles). In addition, the method was also applied to the enrichment of phosphopeptides in real samples (skim milk, human saliva, and serum), demonstrating the feasibility of this method for phosphoproteomic analysis. After enriching from human nonsmall cell lung cancer cell (A549) lysates with MNP-pSPA-b-pNIPAm, 2595 phosphopeptides corresponding to 2281 phosphoproteins were identified. The novel responsive enrichment probe is highly specific for phosphoproteomic analysis and provides an effective method for studying the significance of protein phosphorylation in complex biological samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Phosphopeptides/analysis , Temperature , Magnetic Phenomena , Hydrogen-Ion Concentration , Titanium/chemistry
18.
Small Methods ; 7(9): e2300254, 2023 09.
Article in English | MEDLINE | ID: mdl-37231570

ABSTRACT

Following an in-depth examination of a single type of protein posttranslational modification, the synergistic analysis of two or more modification types has gradually emerged as a focal point in proteomic research. Palmitoylation and glycosylation are both critical for protein, implicated in carcinogenesis and inflammation. In this study, novel dual-responsive magnetic nanocomposites that serve as an ideal platform for the sequential or simultaneous enrichment of palmitoyl and glycopeptides are reported. The nanocomposites denoted as magDVS-VBA are constructed by modifying magnetic nanoparticles with azobenzene and divinyl sulfone (DVS), and self-assembled with 4-vinylbenzeneboronic acid (VBA)-immobilized ß-cyclodextrin, which responds to light. The incorporated DVS component possesses the ability to recognize palmitoyl or glycopeptides under different pH conditions, whereas the introduction of VBA enhances the affinity of the nanocomposite for glycopeptides. Notably, magDVS-VBA exhibits flexible photo-, pH-, and magnetic-responsive capabilities, enabling the simultaneous recognition of hydrophobic palmitoyl peptides and hydrophilic glycopeptides for the first time. The developed platform demonstrates high specificity for sensitive palmitoylomics and glycomics analysis of mouse liver tissue, providing an effective method for studying of their crosstalk, and potential implications in clinical applications.


Subject(s)
Nanocomposites , Proteomics , Animals , Mice , Glycomics , Glycopeptides/chemistry , Nanocomposites/chemistry , Magnetic Phenomena , Hydrogen-Ion Concentration
19.
J Mater Chem B ; 11(22): 4874-4881, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37222008

ABSTRACT

Protein glycosylation and phosphorylation are the two most important post-translational modifications, which play a vital role in physiological and pathological processes. Before the comprehensive characterization of glycoproteome/phosphoproteome through the mass spectrometry (MS) technique, it is necessary to perform a highly specific enrichment procedure because glycoproteins/phosphoproteins inherently occur in low abundances. Herein, we have reported a novel magnetic ß-cyclodextrin-based host-guest Ti-phenolic network material, focusing on the simultaneous enrichment of glycopeptides/phosphopeptides via hydrophilic interaction chromatography and immobilized metal ion chromatography. Ti ions and glutathione-derived adamantine were introduced by metal-phenolic interactions and host-guest interactions. The material possesses biocompatibility, good hydrophilicity, strong magnetic response, metal chelation effect, and demonstrates an excellent enrichment ability towards glycopeptides/phosphopeptides. Combined with MS detection, high sensitivity (0.035/0.01 fmol for IgG/ß-casein) and good reusability (6 times) were achieved. In addition, its outstanding specificity was validated in quantities as low as 500 : 1 : 1 for BSA : IgG : ß-casein (m/m/m). Benefiting from these merits, the adsorbent material was successfully used for the simultaneous enrichment of phosphopeptides/glycopeptides from human serum and HeLa cell lysate and can be expected to exhibit great applicability for precious and small amounts of biosamples in the study of glycoproteomics/phosphoproteomics.


Subject(s)
Glycopeptides , Phosphopeptides , Humans , Phosphopeptides/analysis , Titanium/chemistry , Caseins/chemistry , HeLa Cells , Hydrophobic and Hydrophilic Interactions , Magnetic Phenomena , Immunoglobulin G
20.
Cell Death Differ ; 30(6): 1517-1532, 2023 06.
Article in English | MEDLINE | ID: mdl-37031273

ABSTRACT

Dysregulation of long noncoding RNAs (lncRNAs) has been associated with the development and progression of many human cancers. Lactate dehydrogenase A (LDHA) enzymatic activity is also crucial for cancer development, including the development of papillary thyroid cancer (PTC). However, whether specific lncRNAs can regulate LDHA activity during cancer progression remains unclear. Through screening, we identified an LDHA-interacting lncRNA, GLTC, which is required for the increased aerobic glycolysis and cell viability in PTC. GLTC was significantly upregulated in PTC tissues compared with nontumour thyroid tissues. High expression of GLTC was correlated with more extensive distant metastasis, a larger tumour size, and poorer prognosis. Mass spectrometry revealed that GLTC, as a binding partner of LDHA, promotes the succinylation of LDHA at lysine 155 (K155) via competitive inhibition of the interaction between SIRT5 and LDHA, thereby promoting LDHA enzymatic activity. Overexpression of the succinylation mimetic LDHAK155E mutant restored glycolytic metabolism and cell viability in cells in which metabolic reprogramming and cell viability were ceased due to GLTC depletion. Interestingly, GLTC inhibition abrogated the effects of K155-succinylated LDHA on radioiodine (RAI) resistance in vitro and in vivo. Taken together, our results indicate that GLTC plays an oncogenic role and is an attractive target for RAI sensitisation in PTC treatment.


Subject(s)
RNA, Long Noncoding , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Iodine Radioisotopes/metabolism , Cell Line, Tumor , Thyroid Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...