Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Article in English | MEDLINE | ID: mdl-38669697

ABSTRACT

The construction of cell mimics replicating the surface landscape and biological functions of the cell membrane offers promising prospects for biomedical research and applications. Inspired by the inherent recognition capability of immune cells toward pathogens, we have fabricated activated macrophage membrane-coated magnetic silicon nanoparticles (aM-MSNPs) in this work as an isolation and recognition tool for enhanced bacterial analysis. Specifically, the natural protein receptors on the activated macrophage membrane endow the MSNPs with a broad-spectrum binding capacity to different pathogen species. By further incorporation of a tyramide amplification strategy, direct naked-eye analysis of specific bacteria with a detection limit of 10 CFU/mL can be achieved. Moreover, application to the diagnosis of urinary tract infections has also been validated, and positive samples spiked with bacteria can be clearly distinguished with an accuracy of 100%. This work may enrich cell membrane-based architectures and provide an experimental paradigm for point-of-care testing (POCT) detection of bacteria.

2.
Biotechnol J ; 19(4): e2400026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622795

ABSTRACT

Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.


Subject(s)
DNA, Single-Stranded , DNA , DNA, Single-Stranded/genetics , Polymerase Chain Reaction/methods , DNA-Directed DNA Polymerase , Oligonucleotides , Nucleic Acid Amplification Techniques/methods
3.
Chembiochem ; 25(8): e202400054, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38477700

ABSTRACT

Synthetic biology, a newly and rapidly developing interdisciplinary field, has demonstrated increasing potential for extensive applications in the wide areas of biomedicine, biofuels, and novel materials. DNA assembly is a key enabling technology of synthetic biology and a central point for realizing fully synthetic artificial life. While the assembly of small DNA fragments has been successfully commercialized, the assembly of large DNA fragments remains a challenge due to their high molecular weight and susceptibility to breakage. This article provides an overview of the development and current state of DNA assembly technology, with a focus on recent advancements in the assembly of large DNA fragments in Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. In particular, the methods and challenges associated with the assembly of large DNA fragment in different hosts are highlighted. The advancements in DNA assembly have the potential to facilitate the construction of customized genomes, giving us the ability to modify cellular functions and even create artificial life. It is also contributing to our ability to understand, predict, and manipulate living organisms.


Subject(s)
DNA , Genome , DNA/genetics , Saccharomyces cerevisiae/genetics , Synthetic Biology
4.
Mol Cell Biochem ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367118

ABSTRACT

The E3 ubiquitin ligase Tripartite-motif 3 (TRIM3) is known to play a crucial role in tumor suppression in various tumors through different mechanisms. However, its function and mechanism in ovarian cancer have yet to be elucidated. Our study aims to investigate the expression of TRIM3 in ovarian cancer and evaluate its role in the development of the disease. Our findings revealed a significant decrease in TRIM3 mRNA and protein levels in ovarian cancer tissues and cells when compared to normal ovarian epithelial tissues and cells. Furthermore, we observed a negative correlation between the protein level of TRIM3 and the FIGO stage, as well as a positive correlation with the survival of ovarian cancer patients. Using gain and loss of function experiments, we demonstrated that TRIM3 can inhibit cell proliferation, migration and invasion of the ovarian cancer cells in vitro, as well as suppress tumor growth in vivo. Mechanistic studies showed that TRIM3 interacts with lactate dehydrogenase A, a key enzyme in the glycolytic pathway, through its B-box and coiled-coil domains and induces its ubiquitination and proteasomal degradation, leading to the inhibition of glycolytic ability in ovarian cancer cells. RNA-sequencing analysis revealed significant alterations in the phosphatidylinositol signaling pathways upon TRIM3 overexpression. Additionally, overexpression of TRIM3 inhibited the phosphorylation of AKT. In conclusion, our study demonstrated that TRIM3 exerts a tumor-suppressive effect in ovarian cancer, at least partially, by downregulating LDHA and inhibiting the AKT signaling pathway, and thus leading to the inhibition of glycolysis and limiting the growth of ovarian cancer cells.

5.
Biosens Bioelectron ; 250: 116060, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38278121

ABSTRACT

Intelligent artificial DNA circuits have emerged as a promising approach for modulating signaling pathways and signal transduction through rational design, which may contribute to comprehensively realizing biomolecular sensing of organisms. In this work, we have fabricated an electrochemical biosensor for the sensitive and accurate detection of ovarian cancer-derived exosomes by constructing an entropy-driven autocatalytic DNA circuit (EADC). Specifically, the robust EADC is prepared by the self-assembly of well-designed DNA probes, and upon stimulation of the presence of ovarian cancer cells-derived exosomes, numerous inputs can be produced to feedback and accelerate the reaction. The catalytic abilities of the generated input sequences play a pivotal role in EADC and dramatically enhance the signal amplification capability. Through the combination of the autocatalytic circuit and circular cleavage reactions, significantly changed electrochemical signals can be recorded for sensitive analysis of the exosomes with a remarkably low detection limit of 30 particles/µL. Moreover, the proposed enzyme-free biosensor shows exceptional performance in distinguishing patient samples from healthy samples, which exhibits promising prospects for the clinical diagnosis of ovarian cancer.


Subject(s)
Biosensing Techniques , Exosomes , Ovarian Neoplasms , Humans , Female , Exosomes/chemistry , Entropy , DNA/chemistry , Ovarian Neoplasms/diagnosis , Limit of Detection , Electrochemical Techniques
6.
J Colloid Interface Sci ; 661: 150-163, 2024 May.
Article in English | MEDLINE | ID: mdl-38295697

ABSTRACT

Although great progress has been made with respect to electron bridges, the electron mobility of the state-of-the-art electron bridges is far from satisfactory because of weak electrical conductivity. To overcome the above issue, cobalt phosphide (CoP), as a model electron bridge, was modified by superficial oxygen vacancies (OVs) and embedded into a defective bismuth oxychloride/carbon nitride (BiO1-xCl/g-C3N4) Z-scheme heterojunction to obtain atomic-level insights into the effect of surface OVs on CoP electron bridges. Compared to BiO1-xCl/g-C3N4 and bismuth oxychloride/cobalt phosphide/carbon nitride (BiOCl/CoP/g-C3N4) composites, the defective bismuth oxychloride/cobalt phosphide/carbon nitride (BiO1-xCl/CoP/g-C3N4) heterojunction exhibited remarkable photocatalytic redox performance, indicating that the surface OVs-assisted CoP electron bridge effectively boosted electrical conductivity and yielded ultrafast electron transfer rates. The theoretical and experimental results demonstrate that the surface OVs play a critical role in improving the electrical conductivity of the CoP electron bridge, thereby accelerating electron mobility. This research provides insights into interfacial OVs-modified transition metal phosphide (TMP) electron bridges and their potential application in heterojunctions for energy crisis mitigation and environmental remediation.

7.
Nanomedicine (Lond) ; 19(1): 25-41, 2024 01.
Article in English | MEDLINE | ID: mdl-38059464

ABSTRACT

Aim: To develop nanocarriers for targeting the delivery of chemotherapeutics to overcome multidrug-resistant ovarian cancer. Materials & methods: Doxorubicin-loaded nanovesicles were obtained through serial extrusion, followed by loading of P-glycoprotein siRNA and folic acid. The targeting ability and anticancer efficacy of the nanovesicles were evaluated. Results: The doxorubicin-loaded nanovesicles showed a high production yield. The presence of P-glycoprotein siRNA and folic acid resulted in reversed drug resistance and tumor targeting. This nanoplatform tremendously inhibited the viability of multidrug-resistant ovarian cancer cells, which was able to target tumor tissue and suppress tumor growth without adverse effects. Conclusion: These bioengineered nanovesicles could serve as novel extracellular vesicles mimetics for chemotherapeutics delivery to overcome multidrug resistance.


When treating cancer affecting the ovaries, which is an organ in the female reproductive system, two challenges that arise are the inefficient delivery of chemotherapeutic drugs and the development of drug resistance inside the tumor. In this study, very small nano-scale particles called nanovesicles, which contain a chemotherapeutic drug called doxorubicin, were developed in an attempt to overcome both of these concerns. These nanovesicles were secreted by a healthy cell from an ovary, isolated and loaded with doxorubicin. These nanovesicles were also loaded with siRNA, which, in this case, prevents the synthesis of a protein in ovarian tumor cells called P-glycoprotein. This protein is responsible for pumping chemotherapy drugs back out of tumor cells, so preventing its synthesis was intended to counter chemotherapeutic resistance. The targeting ability of the nanovesicle was also enhanced with folic acid, as folic acid receptors are present on the surface of these tumor cells in higher numbers. These nanovesicles were readily and specifically taken up by ovarian tumor cells in mice with induced ovarian cancer. This reversed drug resistance and enhanced the toxic effects of doxorubicin on the tumor cells, which, in turn, increased tumor cell death and prevented tumor cell migration. No obvious adverse effect was found in mice treated with the nanovesicle system compared with the free chemotherapy drug with critical systematic toxicity. This research provides new avenues for ovarian cancer treatment, with combined therapies of siRNAs and chemotherapeutic drugs, targeted to tumor cells specifically, within nanovesicles.


Subject(s)
Extracellular Vesicles , Ovarian Neoplasms , Female , Humans , Cell Line, Tumor , Doxorubicin/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Drug Carriers/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1 , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , ATP Binding Cassette Transporter, Subfamily B/pharmacology , Folic Acid/pharmacology , Drug Resistance, Neoplasm
8.
J Ethnopharmacol ; 323: 117608, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158098

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglianhuazhuo formula (XLHZ) has a potential therapeutic effect on chronic atrophic gastritis (CAG). However, the specific molecular mechanism remains unclear. AIM OF THE STUDY: To evaluate the effect of XLHZ on CAG in vitro and in vivo and its potential mechanisms. METHODS: A rat model of CAG was established using a composite modeling method, and the pathological changes and ultrastructure of gastric mucosa were observed. YY1/miR-320a/TFRC and ferroptosis-related molecules were detected. An MNNG-induced gastric epithelial cell model was established in vitro to evaluate the inhibitory effect of XLHZ on cell ferroptosis by observing cell proliferation, migration, invasion, apoptosis, and molecules related to ferroptosis. The specific mechanism of action of XLHZ in treating CAG was elucidated by silencing or overexpression of targets. RESULTS: In vivo experiments showed that XLHZ could improve the pathological status and ultrastructure of gastric mucosa and inhibit ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway. The results in vitro demonstrated that transfection of miR-320a mimics inhibited cell proliferation, migration, and invasion while promoting cell apoptosis. MiR-320a targeted TFRC and inhibited ferroptosis. Overexpression of TFRC reversed the inhibitory effect of miR-320a overexpression on cell proliferation. The effect of XLHZ was consistent with that of miR-320a. YY1 targeted miR-320a, and its overexpression promoted ferroptosis. CONCLUSION: XLHZ inhibited ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway, ultimately impeding the progression of CAG.


Subject(s)
Ferroptosis , Gastritis, Atrophic , MicroRNAs , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/genetics , Signal Transduction , Cell Proliferation
9.
J Biomed Res ; 38(1): 51-65, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981573

ABSTRACT

Long noncoding RNA (lncRNA) IDH1 antisense RNA 1 ( IDH1-AS1) is involved in the progression of multiple cancers, but its role in epithelial ovarian cancer (EOC) is unknown. Therefore, we investigated the expression levels of IDH1-AS1 in EOC cells and normal ovarian epithelial cells by quantitative real-time PCR (qPCR). We first evaluated the effects of IDH1-AS1 on the proliferation, migration, and invasion of EOC cells through cell counting kit-8, colony formation, EdU, transwell, wound-healing, and xenograft assays. We then explored the downstream targets of IDH1-AS1 and verified the results by a dual-luciferase reporter, qPCR, rescue experiments, and Western blotting. We found that the expression levels of IDH1-AS1 were lower in EOC cells than in normal ovarian epithelial cells. High IDH1-AS1 expression of EOC patients from the Gene Expression Profiling Interactive Analysis database indicated a favorable prognosis, because IDH1-AS1 inhibited cell proliferation and xenograft tumor growth of EOC. IDH1-AS1 sponged miR-518c-5p whose overexpression promoted EOC cell proliferation. The miR-518c-5p mimic also reversed the proliferation-inhibiting effect induced by IDH1-AS1 overexpression. Furthermore, we found that RNA binding motif protein 47 (RBM47) was the downstream target of miR-518c-5p, that upregulation of RBM47 inhibited EOC cell proliferation, and that RBM47 overexpressing plasmid counteracted the proliferation-promoting effect caused by the IDH1-AS1 knockdown. Taken together, IDH1-AS1 may suppress EOC cell proliferation and tumor growth via the miR-518c-5p/RBM47 axis.

10.
Nat Commun ; 14(1): 6327, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816771

ABSTRACT

N-acetyltransferase 10 (NAT10) is an N4-acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.


Subject(s)
Herpesvirus 8, Human , Herpesvirus 8, Human/metabolism , Inflammasomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Nuclear , Cytidine/metabolism , RNA Stability , Virus Replication , Gene Expression Regulation, Viral
11.
Biomedicines ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37760781

ABSTRACT

BACKGROUND: Chronic atrophic gastritis (CAG) is a chronic inflammatory disease and premalignant lesion of gastric cancer. As an antimicrobial peptide, hepcidin can maintain iron metabolic balance and is susceptible to inflammation. OBJECTIVES: The objective of this study was to clarify whether hepcidin is involved in abnormal iron metabolism and ferroptosis during CAG pathogenesis. METHODS: Non-atrophic gastritis (NAG) and chronic atrophic gastritis (CAG) patient pathology slides were collected, and related protein expression was detected by immunohistochemical staining. The CAG rat model was established using MNNG combined with an irregular diet. RESULTS: CAG patients and rats exhibited iron deposition in gastric tissue. CAG-induced ferroptosis in the stomach was characterized by decreased GPX4 and FTH levels and increased 4-HNE levels. Hepcidin, which is mainly located in parietal cells, was elevated in CAG gastric tissue. The high gastric level of hepcidin inhibited iron absorption in the duodenum by decreasing the protein expression of DMT1 and FPN1. In addition, the IL-6/STAT3 signaling pathway induced hepcidin production in gastric tissue. CONCLUSION: Our results showed that the high level of gastric hepcidin induced ferroptosis in the stomach but also inhibited iron absorption in the intestines. Inhibiting hepcidin might be a new strategy for the prevention of CAG in the future.

12.
Open Med (Wars) ; 18(1): 20230785, 2023.
Article in English | MEDLINE | ID: mdl-37693835

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease and associated with metabolic imbalance. Luteolin (LUT) reportedly exhibits anti-inflammatory activity. However, its regulatory effects on metabolites remain indistinct. Here, the effects of LUT on immune response and oxidative stress in UC were determined. Serum metabolomics profiles of UC rats treated with LUT were obtained utilizing liquid chromatography-mass spectrometry. The results revealed that LUT treatment alleviated colon tissue injury, colon shortening, weight loss, and inflammatory response in UC rats. Additionally, the levels of superoxide dismutase and total antioxidant capacity were elevated, but malondialdehyde content was reduced in serum of UC rats, while these changes were abrogated by LUT. Metabolomics analysis unveiled that l-malic acid, creatinine, l-glutamine, and l-lactic acid levels were remarkably decreased, while dimethyl sulfone, 5-methylcytosine, cysteine-S-sulfate, and jasmonic acid levels were notably increased after LUT treatment. Furthermore, differential metabolites primarily participated in d-glutamine and d-glutamate metabolism, glutathione metabolism, and citrate cycle pathways. In summary, these results demonstrated that LUT improved immune response, alleviated oxidative stress, and altered metabolites in UC rats. This study lays the root for further exploring the mechanism of LUT in the treatment of UC.

13.
FASEB J ; 37(10): e23183, 2023 10.
Article in English | MEDLINE | ID: mdl-37665628

ABSTRACT

Ovarian cancer (OC) is the second leading cause of gynecological cancer-related death in women worldwide. N6-methyladenosine (m6 A) is the most abundant internal modification in eukaryotic RNA. Human insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an m6 A reader, can enhance mRNA stability and promote translation by recognizing m6 A modifications. Its tumor-promoting effects have been demonstrated in several cancers. However, the roles of m6 A modification and IGF2BP2 in OC remain unclear. Here, by using methylated RNA immunoprecipitation sequencing, we demonstrated that there is widespread dysregulation of m6 A modification in OC tissues. The m6 A modification and the mRNA and protein levels of IGF2BP2 were significantly elevated in OC. Overexpression of IGF2BP2 facilitated OC cell proliferation, migration, and invasion in vitro and accelerated tumor growth and metastasis in vivo. While IGF2BP2-knockdown showed the opposite effect. Mechanistically, we identified cytoskeleton-associated protein 2-like (CKAP2L) as a target of IGF2BP2. IGF2BP2 promoted CKAP2L translation dependent on m6 A modification, rather than affecting mRNA and protein stability. Overexpression of CKAP2L rescued the tumor-suppressive effect of IGF2BP2 knockdown in OC cells. In conclusion, this study revealed the potential role of IGF2BP2 in tumor progression, at least partially via promoting the translation of CKAP2L in an m6 A-dependent manner.


Subject(s)
Cytoskeletal Proteins , Ovarian Neoplasms , RNA-Binding Proteins , Female , Humans , Adenosine , Cell Proliferation , Cytoskeletal Proteins/genetics , Immunoprecipitation , Ovarian Neoplasms/genetics , RNA-Binding Proteins/genetics
14.
Heliyon ; 9(8): e18802, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576246

ABSTRACT

Objective: To study the function of Huazhuo Jiedu Decoction (HZJD) in promoting the homing of bone marrow mesenchymal stem cells (BMSCs) and contributing to the reconstruction of the intestinal mucosal barrier in ulcerative colitis. Methods: Bone mesenchymal stem cells derived from mice were isolated and cultured, osteogenic and adipogenic assays to study the differentiation ability of BMSCs, and flow cytometry was used to detect the surface marker of the third generation cells. 30 mice were selected and divided into blank group, model group, HZJD group, BMSCs group, and HZJD combined with BMSCs group. Mouse colon length, body weight, and DAI score were used to assess efficacy. The levels of IL-6, IL-1ß, TNF-α, and IFN-γ in serum were measured by ELISA. BMSCs transfected with GFP were used to mark the homing of BMSCs in mice. The BMSCs tagging protein CD90+/CD29+ was detected by immunofluorescence. H&E staining detects damage to the colon and the inflammatory response. The expression levels of claudin-2, claudin-4, occludin, and ZO-1 in colon tissues were detected by Western blot. Results: After subculture, the cell grew with adherence. Flow cytometry showed that the cells were CD73+/CD90+/CD29+/CD45-/CD34-, which belonged to bone mesenchymal stem cells. ELISA showed that the treatment with HZJD and BMSCs suppressed the DSS-induced inflammatory response. BMSCs carrying GFP can be detected in intestinal tissues. Immunofluorescence showed that the HZJD combined with the BMSCs group had more BMSCs homing to the colonic tissue. The results of H&E and Western blot showed that DSS-induced intestinal mucosal damage in UC mice was repaired by HZJD and BMSCs, and the abnormal tight junction proteins claudin-2, claudin-4, occludin, and ZO-1 were normalized. Conclusion: HZJD has a therapeutic effect on ulcerative colitis by promoting the migration of BMSCs to ulcers of the colon and contributing to the reconstruction of the intestinal mucosal barrier in ulcerative colitis.

15.
Proc Natl Acad Sci U S A ; 120(28): e2303822120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399419

ABSTRACT

Exosomes (EXOs) have been proven as biomarkers for disease diagnosis and agents for therapeutics. Great challenge remains in the separation of EXOs with high-purity and low-damage from complex biological media, which is critical for the downstream applications. Herein, we report a DNA-based hydrogel to realize the specific and nondestructive separation of EXOs from complex biological media. The separated EXOs were directly utilized in the detection of human breast cancer in clinical samples, as well as applied in the therapeutics of myocardial infarction in rat models. The materials chemistry basis of this strategy involved the synthesis of ultralong DNA chains via an enzymatic amplification, and the formation of DNA hydrogels through complementary base-pairing. These ultralong DNA chains that contained polyvalent aptamers were able to recognize and bind with the receptors on EXOs, and the specific and efficient binding ensured the selective separation of EXOs from media into the further formed networked DNA hydrogel. Based on this DNA hydrogel, rationally designed optical modules were introduced for the detection of exosomal pathogenic microRNA, which achieved the classification of breast cancer patients versus healthy donors with 100% precision. Furthermore, the DNA hydrogel that contained mesenchymal stem cell-derived EXOs was proved with significant therapeutic efficacy in repairing infarcted myocardium of rat models. We envision that this DNA hydrogel-based bioseparation system is promising as a powerful biotechnology, which will promote the development of extracellular vesicles in nanobiomedicine.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Humans , Rats , Animals , Exosomes/genetics , Exosomes/metabolism , Hydrogels/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 574-586, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37057923

ABSTRACT

Ovarian cancer is the second leading cause of death in women with gynecological malignancy in China. Circular RNAs are a class of noncoding regulatory RNAs reported to be involved in cancer development and progression. Previous studies, including our own, have indicated that hsa_circ_0007444 is downregulated in ovarian cancer tissues. This study aims to elucidate the function and mechanism of hsa_circ_0007444 in ovarian cancer progression. The expression of hsa_circ_0007444 is determined by quantitative real-time PCR (qRT-PCR). Cell proliferation, invasion, migration and apoptosis are examined by cell counting-kit 8 (CCK-8), transwell and flow cytometry assays. Tumor growth and metastasis are assessed in vivo using Balb/c nude mouse xenograft model and tail vein injection model. And the mechanism of action of hsa_circ_0007444 is analysed by RNA-binding protein immunoprecipitation (RIP), luciferase reporter and rescue assays. hsa_circ_0007444 is downregulated in ovarian cancer tissues and cell lines compared with that in normal ovarian tissues and normal epithelial cell line. Gain- and loss-of-function results indicate that hsa_circ_0007444 inhibits cell proliferation, invasion, migration and increases cell apoptosis of ovarian cancer cells in vitro, and inhibits tumor growth and lung metastasis in vivo. Mechanistically, hsa_circ_0007444 can interact with AGO2 and sponge miR-23a-3p, thereby upregulating DICER1 expression, which is an important tumor suppressor in ovarian cancer. And miR-23a-3p mimics can rescue the inhibitory effect of hsa_circ_0007444 on ovarian cancer cell proliferation, invasion and migration. Therefore, hsa_circ_0007444 can inhibit ovarian cancer progression through the hsa_circ_0007444/miR-23a-3p/DICER1 axis.


Subject(s)
Lung Neoplasms , MicroRNAs , Ovarian Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/genetics , Ribonuclease III , RNA, Circular/genetics
17.
Crit Rev Eukaryot Gene Expr ; 33(3): 27-38, 2023.
Article in English | MEDLINE | ID: mdl-37017667

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is a preferential omental metastasis malignancy. Since omental adipose tissue is an endocrine organ, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to compare the peptides secreted from omental adipose tissues of HGSOC and benign serous ovarian cysts (BSOC). Among the differentially secreted peptides, we detected 58 upregulated peptides, 197 downregulated peptides, 24 peptides that were only in the HGSOC group and 20 peptides that were only in the BSOC group (absolute fold change ≥ 2 and P < 0.05). Then, the basic characteristics of the differential peptides were analyzed, such as lengths, molecular weights, isoelectric points, and cleavage sites. Furthermore, we summarized the possible functions according to the precursor protein functions of the differentially expressed peptides by Gene Ontology (GO) analysis with the Annotation, Visualization, and Integrated Discovery (DAVID) database and canonical pathway analysis with IPA. For the GO analysis, the differentially secreted peptides were mainly associated with binding in molecular function and cellular processes in biology process. For the canonical pathways, the differentially secreted peptides were related to calcium signaling, protein kinase A signaling, and integrin-linked kinase (ILK) signaling. We also identified 67 differentially secreted peptides that located in the functional domains of the precursor proteins. These functional domains were mainly related to energy metabolism and immunoregulation. Our study might provide drugs that could potentially treat HGSOC or omental metastases of HGSOC cells.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Peptides/metabolism , Adipose Tissue
18.
PLoS Pathog ; 19(4): e1011324, 2023 04.
Article in English | MEDLINE | ID: mdl-37023208

ABSTRACT

Post-translational modifications (PTMs) are essential for host antiviral immune response and viral immune evasion. Among a set of novel acylations, lysine propionylation (Kpr) has been detected in both histone and non-histone proteins. However, whether protein propionylation occurs in any viral proteins and whether such modifications regulate viral immune evasion remain elusive. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral interferon regulatory factor 1 (vIRF1) can be propionylated in lysine residues, which is required for effective inhibition of IFN-ß production and antiviral signaling. Mechanistically, vIRF1 promotes its own propionylation by blocking SIRT6's interaction with ubiquitin-specific peptidase 10 (USP10) leading to its degradation via a ubiquitin-proteasome pathway. Furthermore, vIRF1 propionylation is required for its function to block IRF3-CBP/p300 recruitment and repress the STING DNA sensing pathway. A SIRT6-specific activator, UBCS039, rescues propionylated vIRF1-mediated repression of IFN-ß signaling. These results reveal a novel mechanism of viral evasion of innate immunity through propionylation of a viral protein. The findings suggest that enzymes involved in viral propionylation could be potential targets for preventing viral infections.


Subject(s)
Herpesvirus 8, Human , Sirtuins , Antiviral Agents/metabolism , Herpesvirus 8, Human/genetics , Immune Evasion , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-3/metabolism , Lysine/metabolism , Sirtuins/metabolism , Viral Proteins/metabolism , Humans
19.
J Colloid Interface Sci ; 640: 329-337, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36867929

ABSTRACT

Considering the high costs of producing catalysts, designing a bifunctional catalyst is one of the favorable ways through which the best result can be achieved with less effort. Herein, we use a one-step calcination method to obtain a bifunctional catalyst Ni2P/NF for the simultaneous oxidation of benzyl alcohol (BA) and reduction of water. A series of electrochemical tests have shown that this catalyst has a low catalytic voltage, long-term stability and high conversion rates. The theoretical calculation unveils the essential reason for its excellent activity. The synergistic effect of Ni and P optimizes the adsorption and desorption energy of the intermediate species, thus reducing the energy barrier of the rate-determining step during BA electrooxidation. Thus, this work has laid the foundation for designing a highly efficient bifunctional electrocatalyst for BA oxidation and the hydrogen revolution.

20.
Funct Integr Genomics ; 23(2): 110, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995496

ABSTRACT

Owing to high mortality rate, ovarian cancer seriously threatens women's health. Extensive abdominal metastasis and chemoresistance are the leading causes of ovarian cancer deaths. Through lncRNA sequencing, our previous study identified lncRNA SLC25A21-AS1, which was significantly downregulated in chemoresistant ovarian cancer cells. In this study, we aimed to evaluate the role and mechanism of SLC25A21-AS1 in ovarian cancer. The expression of SLC25A21-AS1 was analyzed by qRT-PCR and online database GEPIA. The biological functions of SLC25A21-AS1 and KCNK4 were analyzed by CCK-8, transwell, and flow cytometry. The specific mechanism was analyzed by RNA-sequencing, RNA binding protein immunoprecipitation, rescue experiments, and bioinformatic analysis. SLC25A21-AS1 was decreased in ovarian cancer tissues and cell lines. Overexpression of SLC25A21-AS1 enhanced the sensitivity of ovarian cancer cells to paclitaxel and cisplatin, and inhibited cell proliferation, invasion, and migration, while SLC25A21-AS1-silencing showed the opposite effect. Potassium channel subfamily K member 4 (KCNK4) was significantly up-regulated upon enforced expression of SLC25A21-AS1. Overexpression of KCNK4 inhibited cell proliferation, invasion, migration ability, and enhanced the sensitivity of ovarian cancer cells to paclitaxel and cisplatin. Meanwhile, KNCK4-overexpression rescued the promotive effect of SLC25A21-AS1-silencing on cell proliferation, invasion and migration. In addition, SLC25A21-AS1 could interact with the transcription factor Enhancer of Zeste Homolog 2 (EZH2), while EZH2 knockdown increased the expression of KCNK4 in some of the ovarian cancer cell lines. SLC25A21-AS1 enhanced the chemosensitivity and inhibited the proliferation, migration, and invasion ability of ovarian cancer cells at least partially by blocking EZH2-mediated silencing of KCNK4.


Subject(s)
Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/metabolism , Cell Proliferation/genetics , Paclitaxel , Gene Expression Regulation, Neoplastic , Potassium Channels/genetics , Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...