Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(9): e23650, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696238

ABSTRACT

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Subject(s)
Adrenal Cortex , Leydig Cells , Mice, Knockout , Animals , Male , Mice , Leydig Cells/metabolism , Adrenal Cortex/metabolism , Androgens/metabolism , Testosterone/blood , Testosterone/metabolism , Behavior, Animal , Mice, Inbred C57BL
3.
Appl Health Econ Health Policy ; 22(4): 457-470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598091

ABSTRACT

OBJECTIVES: This study aimed to systematically assess global economic evaluation studies on COVID-19 vaccination, offer valuable insights for future economic evaluations, and assist policymakers in making evidence-based decisions regarding the implementation of COVID-19 vaccination. METHODS: Searches were performed from January 2020 to September 2023 across seven English databases (PubMed, Web of Science, MEDLINE, EBSCO, KCL-Korean Journal Dataset, SciELO Citation Index, and Derwent Innovations Index) and three Chinese databases (Wanfang Data, China Science and Technology Journal, and CNKI). Rigorous inclusion and exclusion criteria were applied. Data were extracted from eligible studies using a standardized data collection form, with the reporting quality of these studies assessed using the Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022). RESULTS: Of the 40 studies included in the final review, the overall reporting quality was good, evidenced by a mean score of 22.6 (ranging from 10.5 to 28). Given the significant heterogeneity in fundamental aspects among the studies reviewed, a narrative synthesis was conducted. Most of these studies adopted a health system or societal perspective. They predominantly utilized a composite model, merging dynamic and static methods, within short to medium-term time horizons to simulate various vaccination strategies. The research strategies varied among studies, investigating different doses, dosages, brands, mechanisms, efficacies, vaccination coverage rates, deployment speeds, and priority target groups. Three pivotal parameters notably influenced the evaluation results: the vaccine's effectiveness, its cost, and the basic reproductive number (R0). Despite variations in model structures, baseline parameters, and assumptions utilized, all studies identified a general trend that COVID-19 vaccination is cost-effective compared to no vaccination or intervention. CONCLUSIONS: The current review confirmed that COVID-19 vaccination is a cost-effective alternative in preventing and controlling COVID-19. In addition, it highlights the profound impact of variables such as dose size, target population, vaccine efficacy, speed of vaccination, and diversity of vaccine brands and mechanisms on cost effectiveness, and also proposes practical and effective strategies for improving COVID-19 vaccination campaigns from the perspective of economic evaluation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cost-Benefit Analysis , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/economics , COVID-19 Vaccines/economics , COVID-19 Vaccines/administration & dosage , Immunization Programs/economics , Vaccination/economics
4.
Theriogenology ; 216: 118-126, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171198

ABSTRACT

Endometrial receptivity is critical for the successful establishment of pregnancy in ruminants. Interferon tau (IFNT) plays a key role in promoting embryo attachment by activating the Janus kinase/signal transducer and activator of transcription pathway, which induces the expression of a series of interferon-stimulated genes (ISGs). In our previous study, sequencing analysis of goat endometrial epithelial cells (gEECs) treated with 20 ng/mL IFNT revealed a differentially expressed long non-coding RNA located on the STAT3 antisense chain, which we designated STAT3-AS. The aim of this study was to investigate the role and mechanism of STAT3-AS in establishing endometrial receptivity in goats. The results showed that STAT3-AS was expressed in both the nucleus and cytoplasm of gEECs, and its expression increased significantly in the uterus on day 15 of pregnancy. STAT3-AS expression was upregulated in gEECs treated with IFNT alone or in combination with progesterone and estradiol. Knockdown of STAT3-AS using specific short interfering RNA significantly inhibited the expression of classical ISGs such as interferon-stimulated gene 15 and 2',5'-oligodenylate synthetase 2, as well as uterine endometrial receptivity-related genes including homeobox gene A11, integrin beta 3, and vascular endothelial growth factor. Moreover, gEEC proliferation and the STAT3 pathway were suppressed in the absence of STAT3-AS. However, pretreatment with the STAT3 activator RO8191 restored the effect of silencing STAT3-AS on endometrial receptivity. Overall, these results suggest that STAT3-AS is an important regulator of endometrial receptivity in goats and that it regulates endometrial receptivity through the STAT3 pathway.


Subject(s)
RNA, Long Noncoding , Pregnancy , Female , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Vascular Endothelial Growth Factor A/metabolism , Endometrium/metabolism , Signal Transduction , Ruminants , Goats , Embryo Implantation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL