Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.615
Filter
1.
Chem Sci ; 15(30): 12017-12025, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39092128

ABSTRACT

Herein, we present an attractive organocatalytic asymmetric addition of P-nucleophiles to five-membered cyclic N-sulfonyl imines facilitated by phosphonium salt catalysis, enabling the highly enantioselective synthesis of tri- and tetra-substituted cyclic phosphorus-containing benzosultams. With this protocol, various cyclic α-aminophosphonates were efficiently synthesized with high yields and exceptional enantioselectivities (up to >99% ee) under mild reaction conditions. The utility and practicality of this method were demonstrated through gram-scale reactions and straightforward elaborations. Notably, the success of this approach relies on the deliberate selection of a synergistic organocatalytic system, which helps circumvent foreseeable side effects while handling secondary phosphine oxides (SPOs). Systematic mechanistic studies, incorporating experiments and DFT calculations, have revealed the critical importance of judiciously selecting bifunctional phosphonium salt catalysts for effectively activating P-nucleophiles while stereoselectively controlling the P-attack process.

2.
Angew Chem Int Ed Engl ; : e202411889, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086010

ABSTRACT

The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.

3.
FASEB J ; 38(15): e23852, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39101942

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.


Subject(s)
Exosomes , Osteoarthritis , Temporomandibular Joint , Exosomes/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Rats , Male , Humans , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Stem Cells/cytology , Stem Cells/metabolism , Rats, Sprague-Dawley , Urine/cytology , Temporomandibular Joint Disorders/therapy , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Female , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
4.
World J Diabetes ; 15(7): 1627-1644, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39099825

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs) are one of the most severe and popular complications of diabetes. The persistent non-healing of DFUs is the leading cause of ampu-tation, which causes significant mental and financial stress to patients and their families. Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing. However, no studies have been carried out to systematically illustrate this area from a scientometric point of view. Although there have been some bibliometric studies on diabetes, reports focusing on the investigation of macrophages in DFUs are lacking. AIM: To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs. METHODS: The publications of macrophage-related DFUs from January 1, 2004, to December 31, 2023, were retrieved from the Web of Science Core Collection on January 9, 2024. Four different analytical tools: VOSviewer (v1.6.19), CiteSpace (v6.2.R4), HistCite (v12.03.07), and Excel 2021 were used for the scientometric research. RESULTS: A total of 330 articles on macrophage-related DFUs were retrieved. The most published countries, institutions, journals, and authors in this field were China, Shanghai Jiao Tong University of China, Wound Repair and Regeneration, and Aristidis Veves. Through the analysis of keyword co-occurrence networks, historical direct citation networks, thematic maps, and trend topics maps, we synthesized the prevailing research hotspots and emerging trends in this field. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.

5.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117859

ABSTRACT

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Subject(s)
Depressive Disorder, Major , Transcriptome , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Female , Male , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Middle Aged , Magnetic Resonance Imaging , Gene Expression Profiling
6.
Front Nutr ; 11: 1410196, 2024.
Article in English | MEDLINE | ID: mdl-39114122

ABSTRACT

Background: Hypoalbuminemia and cognitive impairment (CI) each independently increase the mortality risk in older adults. However, these two geriatric syndromes can occur simultaneously. In community-dwelling older adults, is the combination of hypoalbuminemia and CI linked to a higher mortality risk than either condition alone? Objective: We aimed to investigate the association between plasma albumin, cognitive function, and their synergistic effect on mortality in Chinese community-dwelling older adults. Methods: Data from the Chinese Longitudinal Healthy Longevity Survey (2012) included 1,858 participants aged ≥65. Baseline assessments comprised albumin levels and cognitive status. All-cause mortality was confirmed through 2014-2018 surveys. Cox proportional hazards models assessed associations, and restricted cubic splines explored albumin-mortality relationship. Results: During a median follow-up of 48.85 months, 921 deaths. Albumin≥35 g/L vs < 35g/L [HR: 1.33 (95%CI, 1.10, 1.62)] and CI vs normal cognition [HR: 1.69 (95%CI, 1.43, 1.99)] independently predicted mortality. A dose-response relationship with mortality was observed for albumin quartiles (p < 0.001). Each SD increase in MMSE or albumin correlated with 22% and 15% lower mortality risk, respectively. Combined hypoproteinemia and CI increased the mortality risk by 155%, with a notably higher risk in males, those aged <85 years, and individuals living in rural areas. Interaction effects of albumin and CI on mortality were observed (p < 0.001). In the single CI group, older adults had a 61% increased risk of mortality in the hypoproteinaemia group compared with the albumin-normal group. Restricted cubic spline revealed a reverse J-shaped association, particularly for participants without CI. For individuals with CI, albumin levels were inversely associated with mortality risk. Conclusion: Hypoproteinemia and CI, individually and combined, increased all-cause mortality risk in Chinese older adults, with stronger effects observed in males, younger older adults, and those living in rural areas. These findings emphasize the importance of targeted adjustments and early nutrition programs in health prevention and clinical care for older adults.

7.
Insects ; 15(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39194819

ABSTRACT

Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects.

8.
Int J Surg ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39166939

ABSTRACT

BACKGROUND: The extent of intrahepatic infiltration of perihilar cholangiocarcinoma (PHCC) remains unclear. This research aimed to explore the pattern and extent of intrahepatic infiltration of PHCC to guide surgical treatment and pathological research. MATERIALS AND METHODS: This study included 62 patients diagnosed with PHCC who underwent major hepatectomy. A whole-mount digital liver pathology system (WDLPS) for hepatectomy specimens greater than 10 × 10 cm was used to panoramically assess the intrahepatic infiltration extent of PHCC. RESULTS: The distal intrahepatic infiltration (DIHI) and radial liver invasion (RLI) were important parts of intrahepatic infiltration for PHCC explored by WDLPS. The study confirmed that 75.8% of PHCCs had RLI and the infiltration distance in all patients were within 15,000 µm, 62.9% of PHCCs had DIHI greater than 1 cm away from the main tumor in liver parenchyma. The recurrence-free survival rates and overall survival rates of patients with DIHI were poorer than the patients without DIHI (P<0.0001, P=0.0038). Arterial invasion on the resected side could be an excellent predictor. A total of 105 liver lobes were resected from 62 PHCC patients. The invasion rates of the left lateral, left medial, right anterior, and right posterior lobe of PHCC were 79%, 100, 100%, and 69% respectively. CONCLUSION: The presence of DIHI in most PHCCs was a significant predictor of poor postoperative recurrence and survival. Based on the extent of intrahepatic infiltration, minor hepatectomy was not suitable as the curative surgery for PHCC. Major hepatectomy and liver transplantation were the ideal radical treatment.

9.
ACS Nano ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163394

ABSTRACT

As advances in computing technology increase demand for efficient data storage solutions, spintronic magnetic tunnel junction (MTJ)-based magnetic random-access memory (MRAM) devices emerge as promising alternatives to traditional charge-based memory devices. Successful applications of such spintronic devices necessitate understanding not only their ideal working principles but also their breakdown mechanisms. Employing an in situ electrical biasing system, atomic-resolution scanning transmission electron microscopy (STEM) reveals two distinct breakdown mechanisms. Soft breakdown occurs at relatively low electric currents due to electromigration, wherein restructuring of MTJ core layers forms ultrathin regions in the dielectric MgO layer and edge conducting paths, reducing device resistance. Complete breakdown occurs at relatively high electric currents due to a combination of joule heating and electromigration, melting MTJ component layers at temperatures below their bulk melting points. Time-resolved, atomic-scale STEM studies of functional devices provide insight into the evolution of structure and composition during device operation, serving as an innovative experimental approach for a wide variety of electronic devices.

10.
Front Med (Lausanne) ; 11: 1422911, 2024.
Article in English | MEDLINE | ID: mdl-39139786

ABSTRACT

In the Internet of Things (IoT) healthcare sector, the wireless body area network (WBAN) is being used to optimize medical results by tracking and treating patients as they go about their daily lives. Health insurance has also been one of the cybercriminal's main goals. The Systematic Review of IoT Healthcare systems particularly wireless body area networks is significant, to reach the benefits and challenges faced by existing methods in the domain. This study provides a systematic survey of WBAN data protection. Various types of devices are used in medical science to detect and diagnose diseases. The network is an integral part of medical science in today's era. In medical sciences, sensors take data from a problematic place like cancerous cells. This research discussed a lot of techniques in the literature review. Most of them are not able to fulfill the requirements. If an unauthorized person reaches the data that can be a severe issue, like the diagnosed disease was blood cancer, and after unauthorized access manipulation can change even the diagnosed issue in the database. A doctor can prescribe the medication based on provided data that has been manipulated by unauthorized persons. Several existing schemes are explored in the literature to determine how the protection of sharing patients' healthcare data can be improved. The systematic literature review (SLR) of multiple security schemes for WBAN is presented in this survey paper.

11.
Int J Biol Macromol ; 278(Pt 2): 134783, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153673

ABSTRACT

Glucagon-like peptide-1 (GLP-1) as a multifunctional hormone is secreted mainly from enteroendocrine L-cells, and enhancing its endogenous secretion has potential benefits of regulating glucose homeostasis and controlling body weight gain. In the present study, a novel polysaccharide (h-DHP) with high ability to enhance plasma GLP-1 level in mice was isolated from Dendrobium huoshanense protocorm-like bodies under the guidance of activity evaluation. Structural identification showed that h-DHP was an acidic polysaccharide with the molecular weight of 1.38 × 105 Da, and was composed of galactose, glucose, arabinose and glucuronic acid at a molar ratio of 15.7: 11.2: 4.5: 1.0 with a backbone consisting of →5)-α-L-Araf-(1→, →3)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-ß-D-Glcp-(1→ and →4,6)-ß-D-Glcp-(1→ along with branches consisting of α-L-Araf-(1→, α-D-Galp-(1→, α-D-GlcAp-(1→, ß-D-Glcp-(1→ and →4)-ß-D-Glcp-(1→. Animal experiments with different administration routes demonstrated that h-DHP-enhanced plasma GLP-1 level was attributed to h-DHP-promoted GLP-1 secretion in the enteroendocrine L-cells, which was supported by h-DHP-enhanced extracellular GLP-1 level in STC-1 cells. Inhibition of adenylate cyclase and phospholipase C indicated that cAMP and cAMP-triggered intracellular Ca2+ increase participated in h-DHP-promoted GLP-1 secretion. These results suggested that h-DHP has the potential of enhancing endogenous GLP-1 level through h-DHP-promoted and cAMP-mediated GLP-1 secretion from enteroendocrine cells.

12.
Biomed Pharmacother ; 178: 117237, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096616

ABSTRACT

The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.


Subject(s)
Autophagy , Membrane Proteins , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Autophagy/genetics , Lysosomes/metabolism , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology
13.
Int J Biol Macromol ; 279(Pt 1): 134920, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173808

ABSTRACT

Green tea residues are the by-product of tea processing and they contain a large number of bioactive ingredients. Steam explosion has been recognized as one of the most innovative pretreatments for modifying the physicochemical characteristic of polysaccharides from lignocellulosic materials. However, the comparison of biological activity of steam exploded (SE-GTR) and unexploded (UN-GTR) green tea residue polysaccharides was still unclear, which prompted the determination of the efficacy of steam explosion in tea residue resource utilization. In this study, the effects of two extracted polysaccharides UN-GTR and SE-GTR on human gut microbiota in vitro fermentation were conducted. The results showed that after steam explosion pretreatment, SE-GTR displayed more loose and porous structures, resulting in higher polysaccharide content (2483.44±0.5 µg/mg) compared to UN-GTR (1903.56±2.6 µg/mg). In addition, after 24 h fermentation, gut microbiota produced more beneficial metabolites by SE-GTR. The largest SCFAs produced among samples was acetic acid, propionic acid and butyric acid. Furthermore, SE-GTR could regulate the composition and diversity of microbial community, increasing the abundance of beneficial bacteria, such as Bifidobacterium. These results revealed that steam explosion pretreatment could be a promising and efficient approach to enhance the antioxidant activity and bioavailability of polysaccharides isolated from tea residues.

14.
Sci Rep ; 14(1): 19918, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39198627

ABSTRACT

Ultraviolet absorption ability of modifiers is essential to protect asphalt from ageing. However, the detailed correlation between them remains unclear. In this study, zinc oxide nanoparticles were used as modifiers, and their ultraviolet absorption ability was manipulated by magnesium and aluminum doping. The influence of ultraviolet absorption ability of the nanoparticles on asphalt ultraviolet ageing was investigated experimentally, and their correlation was revealed in detail by curve fitting. The results show that aluminum doping enhances the ultraviolet absorption ability of nanoparticles, leading to superior anti-aging performance in aluminum-doped zinc oxide modified asphalt compared to pure zinc oxide. Conversely, magnesium doping shows a contrary modification. Evaluating the ultraviolet absorption ability of nanoparticle modifiers by bandgap and absorption intensity, we found that softening point increments, viscosity ageing index, and sulfoxide index exhibit a decreasing trend mainly in the bandgap range of 3.269 to 3.334 eV, whereas carbonyl index shows a decreasing trend mainly in the lower bandgap range of 3.183 to 3.269 eV. This phenomenon is primarily due to the different reactivity of carbon and sulfur with oxygen in asphalt. Curve fitting analysis revealed an exponential correlation between the ageing index of asphalt and the ultraviolet absorption ability of nanoparticles. To achieve superior anti-ultraviolet ageing performance, the nanoparticles should possess an absorption intensity above 0.961 a.u. and a bandgap below 3.299 eV. Moreover, stronger ultraviolet absorption ability of nanoparticles is needed to prevent the formation of carbonyl compounds. The underlying correlation established in the present work has significant implications for selecting suitable modifiers to prevent ultraviolet ageing of asphalt.

15.
Animals (Basel) ; 14(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39199918

ABSTRACT

A new Cyrtodactylus species, C. laevissp. nov., from the dry-hot valleys near the Yarlung Zangbo River in Re Village, Jindong Countryside, Lang County, Linzhi City, Xizang Autonomous Region, China, is described herein based upon the integrative taxonomic results combining molecular phylogenetic systematics and morphological characteristic comparisons. Our molecular phylogeny was inferred by combining three mitochondrial gene fragments (16S/CO1/ND2), and it indicated a distinct differentiation between the new species and C. tibetanus species complex, with obvious genetic distances (16S 9.9-11.8%/CO1 16.5-18.2%/ND2 16.6-18.5%) detected, supporting its validity. Morphologically, the new species can be easily distinguished from its congers by the following characters: (1) medium size (SVL 48.58-50.92 mm), (2) tubercles on dorsum sparse, (3) tail segments absent and tubercles on tails absent, (4) supralabials 10-12 and infralabials 8-10, (5) interorbital scales between anterior corners of the eyes 28-32, (6) scale rows at midbody 96-98, (7) ventral scales between mental and cloacal slit 145-153, (8) ventral scale rows 41-45, and (9) 4 to 5 white-yellow transverse bands with brown dots and black merges between the nape and sacrum. The description of C. laevissp. nov. increased the total species number of C. tibetanus group to three, and the total Cyrtodactylus species number in Xizang to six and in China to eleven. The new species is currently only known from the type locality with its extremely small populations and needs future surveys to reveal its distribution range, population status, natural history, and mechanisms so that the new species can coexist with Altiphylax medogense.

16.
ACS Appl Mater Interfaces ; 16(32): 41734-41742, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093613

ABSTRACT

The development of sustainable and effective electrochemical nitrogen fixation catalysts is crucial for the mitigation of the terrible energy consumption resulting from the Haber-Bosch process. Molybdenum disulfide (MoS2) exhibits promise toward nitrogen reduction reaction (NRR) on account of its similar structure to natural nitrogenases MoFe-co but still undergoes serious challenges with unsatisfactory catalytic performance resulted from limited active sites, conductivity, and selectivity. In this work, Fe/Co/B codoped MoS2 ultrathin nanosheets are synthesized and verified as excellent NRR catalysts with high activity, selectivity, and durability. The FeCoB-MoS2 demonstrates a high ammonia yield of 36.99 µg h-1 mgcat-1 at -0.15 V vs RHE and Faraday efficiency (FE) of 30.65% at -0.10 V vs RHE in 0.1 M HCl. The experimental results and the density functional theory (DFT) calculations emphasize that codoping of Fe, Co, and B into MoS2 synergistically enhances its conductivity and optimizes the electronic structure of the catalyst, which significantly improves the electrocatalytic ammonia synthesis performance. This work broadens the potential and enlightens the strategy for designing efficient electrocatalysts in the NRR field.

17.
Adv Sci (Weinh) ; : e2405137, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136047

ABSTRACT

It is still a challenge to construct single-atom level reduction and oxidation sites in single-component photocatalyst by manipulating coordination configuration for photocatalytic water splitting. Herein, the atomically dispersed asymmetric configuration of six-coordinated Co-S2O4 (two exposed S atoms, two OH groups, and two Co─O─Zn bonds) suspending on ZnIn2S4 nanosheets verified by combining experimental analysis with theoretical calculation, is applied into photocatalytic water splitting. The Co-S2O4 site immobilized by Vs acts as oxidation sites to guide electrons transferring to neighboring independent S atom, achieving efficient separation of reduction and oxidation sites. It is worth mentioning that stabilized Co-S2O4 configuration show dynamic structure evolution to highly active Co-S1O4 configuration (one exposed S atom, one OH group, and three Co─O─Zn bonds) in reaction, which lowers energy barrier of transition state for H2O activization. Ultimately, the optimized photocatalyst exhibits excellent photocatalytic activity for water splitting (H2: 80.13 µmol g-1 h-1, O2: 37.81 µmol g-1 h-1) and outstanding stability than that of multicomponent photocatalysts due to dynamic and reversible evolution between stable Co-S2O4 configuration and active Co-S1O4 configuration. This work demonstrates new cognitions on immobilized strategy through vacancy inducing, manipulating coordination configuration, and dynamic evolution mechanism of single-atom level catalytic site in photocatalytic water splitting.

19.
iScience ; 27(8): 110497, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148715

ABSTRACT

Population-normalized indicators (e.g., GDP per capita), under the assumption of the indicators scaling linearly with population, are ubiquitously used in national development performance comparison. This assumption, however, is not valid because it may ignore agglomeration effect resulting from nonlinear interactions in socioeconomic systems. Here, we present extensive empirical evidence showing the sub-linear scaling rather than the presumed linear scaling between population and multiple indicators of national development performance. We then develop a theoretical framework based on the scaling rule observed in cities to explore the origin of scaling in countries. Finally, we demonstrate that urbanization plays a pivotal role in transforming national development from limited sub-linear growth to unlimited super-linear growth. This underscores the significance of urbanization in achieving sustained growth and elevating human living standards at the national level. Our findings have the potential to inform policies aimed at promoting equitable inter-country comparison and achieving sustainable development in countries.

20.
J Org Chem ; 89(16): 11414-11420, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39102497

ABSTRACT

Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with D2O as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D2 by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND3 in an atomic-economic way.

SELECTION OF CITATIONS
SEARCH DETAIL