Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38106231

ABSTRACT

Methods for spatially resolved cellular profiling using thinly cut sections have enabled in-depth quantitative tissue mapping to study inter-sample and intra-sample differences in normal human anatomy and disease onset and progression. These methods often profile extremely limited regions, which may impact the evaluation of heterogeneity due to tissue sub-sampling. Here, we applied CODA, a deep learning-based tissue mapping platform, to reconstruct the three-dimensional (3D) microanatomy of grossly normal and cancer-containing human pancreas biospecimens obtained from individuals who underwent pancreatic resection. To compare inter- and intra-sample heterogeneity, we assessed bulk and spatially resolved tissue composition in a cohort of two-dimensional (2D) whole slide images (WSIs) and a cohort of thick slabs of pancreas tissue that were digitally reconstructed in 3D from serial sections. To demonstrate the marked under sampling of 2D assessments, we simulated the number of WSIs and tissue microarrays (TMAs) necessary to represent the compositional heterogeneity of 3D data within 10% error to reveal that tens of WSIs and hundreds of TMA cores are sometimes needed. We show that spatial correlation of different pancreatic structures decay significantly within a span of microns, demonstrating that 2D histological sections may not be representative of their neighboring tissues. In sum, we demonstrate that 3D assessments are necessary to accurately assess tissue composition in normal and abnormal specimens and in order to accurately determine neoplastic content. These results emphasize the importance of intra-sample heterogeneity in tissue mapping efforts.

2.
Nat Methods ; 19(11): 1490-1499, 2022 11.
Article in English | MEDLINE | ID: mdl-36280719

ABSTRACT

A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.


Subject(s)
Imaging, Three-Dimensional , Pancreatic Neoplasms , Humans , Imaging, Three-Dimensional/methods , Pancreatic Neoplasms/pathology , Pancreas/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...