Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 61(8): 5958-5973, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38261254

ABSTRACT

As a protein of the orphan nuclear receptor Nr4a family, Nr4a3 has no identified natural ligands. However, its biological activity can be mediated by inducing conformational changes through interactions with specific certain small molecules and receptors. Nr4a3 is activated as an early stress factor under various pathological conditions and plays a regulatory role in various tissues and cells, participating in processes such as cell differentiation, apoptosis, metabolism, and homeostasis. At present, research on the role of Nr4a3 in the pathophysiology of inflammation is considerably limited, especially with respect to its role in the central nervous system (CNS). In this review, we discuss the role of Nr4a3 in multiple sclerosis, Alzheimer's disease, retinopathy, Parkinson's disease, and other CNS diseases. This review shows that Nr4a3 has considerable potential as a therapeutic target in the treatment of CNS diseases. We provide a theoretical basis for the targeted therapy of CNS diseases and neuroinflammation, among other conditions.


Subject(s)
Inflammation , Nervous System Diseases , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/immunology , Receptors, Thyroid Hormone/metabolism , Immune System Diseases/metabolism , Receptors, Steroid/metabolism , DNA-Binding Proteins
2.
Semin Liver Dis ; 43(3): 336-350, 2023 08.
Article in English | MEDLINE | ID: mdl-37582401

ABSTRACT

Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cytokines , Tumor Microenvironment
3.
Free Radic Biol Med ; 203: 1-10, 2023 07.
Article in English | MEDLINE | ID: mdl-37011699

ABSTRACT

Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, remains a global health challenge requiring novel and effective therapeutic agents and approaches. Here, we found that a natural product plumbagin can inhibit the growth of HCC cells by inducing the downregulation of GPX4, but not other antioxidant enzymes such as CAT, SOD1, and TXN. Functionally, genetic silence of GPX4 enhances, whereas the overexpression of GPX4 inhibits plumbagin-induced apoptosis (rather than ferroptosis) in HCC cells. Furthermore, GPX4 protein specifically binds the deubiquitinase USP31, but not other deubiquitinases such as CYLD, USP1, USP14, USP20, USP30, USP38, UCHL1, UCHL3, and UCHL5. As an inhibitor of deubiquitinating enzymes, especially USP31, plumbagin induces ubiquitination of GPX4 and subsequent proteasomal degradation of GPX4 in HCC cells. Accordingly, plumbagin-mediated tumor suppression is also associated with the downregulation of GPX4 and the upregulation of apoptosis in a subcutaneous xenograft tumor model. Taken together, these findings demonstrate a novel anticancer mechanism of plumbagin by inducing GPX4 protein degradation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Cell Line, Tumor , Apoptosis , Ubiquitin Thiolesterase , Thiolester Hydrolases , Mitochondrial Proteins , Ubiquitin-Specific Proteases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL