Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672481

ABSTRACT

Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Glycine max , Photoperiod , Plant Proteins , Flowers/genetics , Flowers/growth & development , Glycine max/genetics , Glycine max/growth & development , Glycine max/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Up-Regulation/genetics
2.
Plant Cell Environ ; 47(5): 1656-1667, 2024 May.
Article in English | MEDLINE | ID: mdl-38282250

ABSTRACT

Soybean (Glycine max) is a typical short-day plant, but has been widely cultivated in high-latitude long-day (LD) regions because of the development of early-maturing genotypes which are photoperiod-insensitive. However, some early-maturing varieties exhibit significant responses to maturity under different daylengths but not for flowering, depicting an evident photoperiodic after-effect, a poorly understood mechanism. In this study, we investigated the postflowering responses of 11 early-maturing soybean varieties to various preflowering photoperiodic treatments. We confirmed that preflowering SD conditions greatly promoted maturity and other postflowering developmental stages. Soybean homologs of FLOWERING LOCUS T (FT), including GmFT2a, GmFT3a, GmFT3b and GmFT5a, were highly accumulated in leaves under preflowering SD treatment. More importantly, they maintained a high expression level after flowering even under LD conditions. E1 RNAi and GmFT2a overexpression lines showed extremely early maturity regardless of preflowering SD and LD treatments due to constitutively high levels of floral-promoting GmFT homolog expression throughout their life cycle. Collectively, our data indicate that high and stable expression of floral-promoting GmFT homologs play key roles in the maintenance of photoperiodic induction to promote postflowering reproductive development, which confers early-maturing varieties with appropriate vegetative growth and shortened reproductive growth periods for adaptation to high latitudes.


Subject(s)
Glycine max , Photoperiod , Glycine max/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/physiology , Circadian Rhythm , Gene Expression Regulation, Plant
3.
Theor Appl Genet ; 136(12): 245, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962664

ABSTRACT

KEY MESSAGE: A total of 101 QTNs were found to be associated with soybean flowering time responses to photo-thermal conditions; three candidate genes with non-synonymous substitutions were identified: Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). The flowering transition is a crucial component of soybean (Glycine max L. Merr.) development. The transition process is regulated by photoperiod, temperature, and their interaction. To examine the genetic architecture associated with temperature- and photo-thermal-mediated regulation of soybean flowering, we here performed a genome-wide association study using a panel of 201 soybean cultivars with maturity groups ranging from MG 000 to VIII. Each cultivar was grown in artificially controlled photoperiod and different seasons in 2017 and 2018 to assess the thermal response (TR) and the interactive photo-thermal response (IPT) of soybean flowering time. The panel contained 96,299 SNPs with minor allele frequencies > 5%; 33, 19, and 49 of these SNPs were significantly associated with only TR, only IPT, and both TR and IPT, respectively. Twenty-one SNPs were located in or near previously reported quantitative trait loci for first-flowering; 16 SNPs were located within 200 kb of the main-effect flowering genes GmFT2a, GmFT2b, GmFT3a, GmFT3b, GmFT5a, GmFT5b, GmCOL2b, GmPIF4b, and GmPIF4c, or near homologs of the known Arabidopsis thaliana flowering genes BBX19, VRN1, TFL1, FUL, AGL19, SPA1, HY5, PFT1, and EDF1. Natural non-synonymous allelic variations were identified in the candidate genes Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). Cultivars with different haplotypes showed significant variations in TR, IPT, and flowering time in multiple environments. The favorable alleles, candidate genes, and diagnostic SNP markers identified here provide valuable information for future improvement of soybean photo-thermal adaptability, enabling expansion of soybean production regions and improving plant resilience to global climate change.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Glycine max/genetics , Genome-Wide Association Study , Temperature , Alleles , Transcription Factors
4.
Mol Breed ; 43(8): 60, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37496825

ABSTRACT

Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01406-z.

5.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298387

ABSTRACT

Flowering time and photoperiod sensitivity are fundamental traits that determine soybean adaptation to a given region or a wide range of geographic environments. The General Regulatory Factors (GRFs), also known as 14-3-3 family, are involved in protein-protein interactions in a phosphorylation-dependent manner, thus regulating ubiquitous biological processes, such as photoperiodic flowering, plant immunity and stress response. In this study, 20 soybean GmSGF14 genes were identified and divided into two categories according to phylogenetic relationships and structural characteristics. Real-time quantitative PCR analysis revealed that GmSGF14g, GmSGF14i, GmSGF14j, GmSGF14k, GmSGF14m and GmSGF14s were highly expressed in all tissues compared to other GmSGF14 genes. In addition, we found that the transcript levels of GmSGF14 family genes in leaves varied significantly under different photoperiodic conditions, indicating that their expression responds to photoperiod. To explore the role of GmSGF14 in the regulation of soybean flowering, the geographical distribution of major haplotypes and their association with flowering time in six environments among 207 soybean germplasms were studied. Haplotype analysis confirmed that the GmSGF14mH4 harboring a frameshift mutation in the 14-3-3 domain was associated with later flowering. Geographical distribution analysis demonstrated that the haplotypes related to early flowering were frequently found in high-latitude regions, while the haplotypes associated with late flowering were mostly distributed in low-latitude regions of China. Taken together, our results reveal that the GmSGF14 family genes play essential roles in photoperiodic flowering and geographical adaptation of soybean, providing theoretical support for further exploring the function of specific genes in this family and varietal improvement for wide adaptability.


Subject(s)
Glycine max , Photoperiod , Haplotypes/genetics , Glycine max/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant
6.
Food Res Int ; 164: 112364, 2023 02.
Article in English | MEDLINE | ID: mdl-36737952

ABSTRACT

As one of major food crops, soybean is grown over a broad ecological region in China with considerable variations in environmental conditions, and the seed compositions of soybeans are diverse among different regions. To clarify the spatial patterns of soybean seed compositions, crude oil, protein, and 11 categories of functional components were quantified in 1792 soybean samples collected from a vast range of soybean planting regions across China spanning from 2010 to 2017. The Kriging interpolation maps presented a clear north-to-south (high latitude to low latitude) increasing trend in contents of crude protein and dietary fiber and decreasing trend in contents of crude oil, phospholipids, saponins, and carotenoids. Soybeans with high-level of total oligosaccharide were concentrated in the central region. Based on the geographical distribution of soybean nutritional components, weather conditions, and cultivation systems, the soybean production areas in China were divided into three regions and 10 subregions. This study highlights the geographic distribution of soybean nutritional compositions and provides scientific evidence for guiding the construction of high-quality edible soybean production bases in China.


Subject(s)
Dietary Fiber , Glycine max , Glycine max/metabolism , Dietary Fiber/metabolism , Seeds , China
7.
Plants (Basel) ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771543

ABSTRACT

Cold stress is a major factor influencing the geographical distribution of soybean growth and causes immense losses in productivity. Understanding the molecular mechanisms that the soybean has undergone to survive cold temperatures will have immense value in improving soybean cold tolerance. This review focuses on the molecular mechanisms involved in soybean response to cold. We summarized the recent studies on soybean cold-tolerant quantitative trait loci (QTLs), transcription factors, associated cold-regulated (COR) genes, and the regulatory pathways in response to cold stress. Cold-tolerant QTLs were found to be overlapped with the genomic region of maturity loci of E1, E3, E4, pubescence color locus of T, stem growth habit gene locus of Dt1, and leaf shape locus of Ln, indicating that pleiotropic loci may control multiple traits, including cold tolerance. The C-repeat responsive element binding factors (CBFs) are evolutionarily conserved across species. The expression of most GmDREB1s was upregulated by cold stress and overexpression of GmDREB1B;1 in soybean protoplast, and transgenic Arabidopsis plants can increase the expression of genes with the DRE core motif in their promoter regions under cold stress. Other soybean cold-responsive regulators, such as GmMYBJ1, GmNEK1, GmZF1, GmbZIP, GmTCF1a, SCOF-1 and so on, enhance cold tolerance by regulating the expression of COR genes in transgenic Arabidopsis. CBF-dependent and CBF-independent pathways are cross-talking and work together to activate cold stress gene expression. Even though it requires further dissection for precise understanding, the function of soybean cold-responsive transcription factors and associated COR genes studied in Arabidopsis shed light on the molecular mechanism of cold responses in soybeans and other crops. Furthermore, the findings may also provide practical applications for breeding cold-tolerant soybean varieties in high-latitude and high-altitude regions.

8.
BMC Plant Biol ; 23(1): 15, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611140

ABSTRACT

BACKGROUND: Soybean is an important protein- and oil-rich crop throughout the world. Much attention has been paid to its nuclear genome, which is bi-parentally inherited and associated with many important agronomical traits. However, less is known about the genomes of the semi-autonomous and essential organelles, chloroplasts and mitochondria, of soybean. RESULTS: Here, through analyzing the polymorphisms of these organelles in 2580 soybean accessions including 107 wild soybeans, we found that the chloroplast genome is more variable than the mitochondrial genome in terms of variant density. Consistent with this, more haplotypes were found in the chloroplast genome (44 haplotypes) than the mitochondrial genome (30 haplotypes). These haplotypes were distributed extremely unevenly with the top two haplotypes (CT1 and CT2 for chloroplasts, MT1 and MT2 for mitochondria) accounting for nearly 70 and 18% of cultivated soybean accessions. Wild soybeans also exhibited more diversity in organelle genomes, harboring 32 chloroplast haplotypes and 19 mitochondrial haplotypes. However, only a small percentage of cultivated soybeans shared cytoplasm with wild soybeans. In particular, the two most frequent types of cytoplasm (CT1/MT1, CT2/MT2) were missing in wild soybeans, indicating that wild soybean cytoplasm has been poorly exploited during breeding. Consistent with the hypothesis that soybean originated in China, we found that China harbors the highest cytoplasmic diversity in the world. The geographical distributions of CT1-CT3 and MT1-MT3 in Northeast China were not significantly different from those in Middle and South China. Two mitochondrial polymorphism sites, p.457333 (T > C) and p.457550 (G > A), were found to be heterozygous in most soybeans, and heterozygosity appeared to be associated with the domestication of cultivated soybeans from wild soybeans, the improvement of landraces to generate elite cultivated soybeans, and the geographic adaptation of soybean. CONCLUSIONS: The haplotypes of thousands of soybean cultivars should be helpful in evaluating the impact of cytoplasm on soybean performance and in breeding cultivars with the desired cytoplasm. Mitochondrial heterozygosity might be related to soybean adaptation, and this hypothesis needs to be further investigated.


Subject(s)
Genome, Mitochondrial , Glycine max , Glycine max/genetics , Genome, Mitochondrial/genetics , Plant Breeding , Haplotypes/genetics , Chloroplasts/genetics , Polymorphism, Single Nucleotide , Genetic Variation
9.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077363

ABSTRACT

Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Flowers , Genomics , Photoperiod , Phylogeny , Plant Breeding , Plant Proteins/metabolism , Glycine max/metabolism
10.
Front Plant Sci ; 13: 929747, 2022.
Article in English | MEDLINE | ID: mdl-35958200

ABSTRACT

Onset of flowering of plants is precisely controlled by extensive environmental factors and internal molecular networks, in which FLOWERING LOCUS T (FT) is a key flowering integrator. In soybean, a typical short-day plant, 11 FT homologues are found in its genome, of which several homologues are functionally diversified in flowering pathways and the others including GmFT3a are yet unknown. In the current study, we characterized GmFT3a, which is located on the same chromosome as the flowering promoters GmFT2a and GmFT5a. Overexpression of GmFT3a significantly promoted flowering of Arabidopsis under the inductive long-day (LD) photoperiod. GmFT3a over-expressed soybean also flowered earlier than the control under LD, but they were not significantly different under inductive short-day (SD) conditions, indicating that GmFT3a acts as a flowering promoter in the non-inductive photoperiod in soybean. Compared with other GmFT homologues, GmFT3a exhibited a slighter effect in flowering promotion than GmFT2a, GmFT5a and GmFT2b under LD conditions. GmFT3a promoted flowering by regulating the expression of downstream flowering-related genes and also affected the expression of other GmFTs. According to the re-sequencing data, the regional distributions of two major haplotypes in 176 soybean varieties were analyzed. The varieties with GmFT3a-Hap2 haplotype matured relatively early, and relative higher expression of GmFT3a was detected in early maturing varieties, implying that Hap2 variation may contribute to the adaptation of soybean to higher latitude regions by increasing expression level of genes in metabolism and signaling pathways. The early flowering germplasm generated by overexpression of GmFT3a has potential to be planted at higher latitudes where non-inductive long day is dominant in the growing season, and GmFT3a can be used to fine-tune soybean flowering and maturity time and improve the geographical adaptation.

11.
Front Plant Sci ; 13: 817544, 2022.
Article in English | MEDLINE | ID: mdl-35371153

ABSTRACT

CONSTANS (CO) plays a critical role in the photoperiodic flowering pathway. However, the function of soybean CO orthologs and the molecular mechanisms in regulating flowering remain largely unknown. This study characterized the natural variations in CO family genes and their association with flowering time and maturity in soybeans. A total of 21 soybean CO family genes (GmCOLs) were cloned and sequenced in 128 varieties covering 14 known maturity groups (MG 0000-MG X from earliest to latest maturity). Regarding the whole genomic region involving these genes, GmCOL1, GmCOL3, GmCOL8, GmCOL9, GmCOL10, and GmCOL13 were conserved, and the remaining 15 genes showed genetic variation that was brought about by mutation, namely, all single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels). In addition, a few genes showed some strong linkage disequilibrium. Point mutations were found in 15 GmCOL genes, which can lead to changes in the potential protein structure. Early flowering and maturation were related to eight genes (GmCOL1/3/4/8/13/15/16/19). For flowering and maturation, 11 genes (GmCOL2/5/6/14/20/22/23/24/25/26/28) expressed divergent physiognomy. Haplotype analysis indicated that the haplotypes of GmCOL5-Hap2, GmCOL13-Hap2/3, and GmCOL28-Hap2 were associated with flowering dates and soybean maturity. This study helps address the role of GmCOL family genes in adapting to diverse environments, particularly when it is necessary to regulate soybean flowering dates and maturity.

12.
Front Plant Sci ; 13: 1101715, 2022.
Article in English | MEDLINE | ID: mdl-36684791

ABSTRACT

Soybean is an important model crop for photoperiodic response studies in plants and contributes significantly to the study of plant development and physiology in the past century. Because soybean plant is much bigger in size and longer in life cycle than Arabidopsis, it needs much more space for growth and time for investigation, which significantly hamper the efficiency of research. In the current study, we tested the photoperiodic response of a distinctive artificially-made cotyledon-only plant (COP) using a photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and other varieties with diverse sensitivity to photoperiod. ZGDD COPs flowered 39.4 ± 2.5 d after emergence under short-day conditions but maintained vegetative growth under long-day and night break conditions, which is similar to the case in the intact ZGDD plants. The COPs of early-maturing and medium-maturing soybean varieties also grew and flowered normally under natural day-length conditions. At the molecular level, the key genes in the photoperiodic pathway such as E1, GmFT1a, GmFT2a, and GmFT5a in the COPs also showed the same photoperiod sensitivity as in the intact plants. In addition, a simpler material of COP with only one cotyledon and root was generated and found to be sensitive to photoperiod as well. Notably, the COPs are only one-fifth the height of intact plants and one-third the maximum diameter of the intact plants grown in chambers 30 d after emergence. Based on COPs, we established a novel experimental system characterized by an entire photoperiodic response and longer longevity of cotyledons in addition to small plant size, ensuring the consistency, reliability, and stability of plant materials. COPs have the potential to be a novel model material for studies of the developmental biology of soybean and other dicots.

13.
Plant Cell Rep ; 40(10): 1875-1888, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34272585

ABSTRACT

KEY MESSAGE: GmFULa improved soybean yield by enhancing carbon assimilation. Meanwhile, different from known yield-related genes, it did not alter flowering time or maturity. Soybean (Glycine max (L.) Merr.) is highly demanded by a continuously growing human population. However, increasing soybean yield is a major challenge. FRUITFULL (FUL), a MADS-box transcription factor, plays important roles in multiple developmental processes, especially fruit and pod development, which are crucial for soybean yield formation. However, the functions of its homologs in soybean are not clear. Here, through haplotype analysis, we found that one haplotype of the soybean homolog GmFULa (GmFULa-H02) is dominant in cultivated soybeans, suggesting that GmFULa-H02 was highly selected during domestication and varietal improvement of soybean. Interestingly, transgenic overexpression of GmFULa enhanced vegetative growth with more biomass accumulated and ultimately increased the yield but without affecting the plant height or changing the flowering time and maturity, indicating that it enhances the efficiency of dry matter accumulation. It also promoted the yield factors like branch number, pod number and 100-seed weight, which ultimately increased the yield. It increased the palisade tissue cell number and the chlorophyll content to promote photosynthesis and increase the soluble sugar content in leaves and fresh seeds. Furthermore, GmFULa were found to be sublocalized in the nucleus and positively regulate sucrose synthases (SUSs) and sucrose transporters (SUTs) by binding with the conserved CArG boxes in their promoters. Overall, these results showed GmFULa promotes the capacity of assimilation and the transport of the resultant assimilates to increase yield, and provided insights into the link between GmFULa and sucrose synthesis with transport-related molecular pathways that control seed yield.


Subject(s)
Carbon/metabolism , Flowers/physiology , Glycine max/genetics , Plant Proteins/genetics , Chlorophyll/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , Glucosyltransferases/metabolism , Haplotypes , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Seeds/genetics , Seeds/metabolism , Glycine max/physiology
14.
BMC Genomics ; 22(1): 529, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34246232

ABSTRACT

BACKGROUND: In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS: We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS: These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis Proteins/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Dissection , Gene Expression Regulation, Plant , Glycine max/genetics
16.
Plant Cell Environ ; 44(8): 2551-2564, 2021 08.
Article in English | MEDLINE | ID: mdl-34050544

ABSTRACT

Soybean (Glycine max), a typical short-day plant (SDP) domesticated in temperate regions, has expanded to high latitudes where daylengths are long from soybean emergence to bloom, but rapidly decrease from seed filling to maturity. Cotyledons are well known as the major storage organs in seeds, but it is unclear whether developing cotyledons store flowering substances at filling stage in SD for upcoming seedlings, or instead respond to photoperiod for floral induction after emergence of matured seeds in long-day (LD). Here, we report that cotyledons accelerate flowering of early-maturing varieties not resulting from stored floral stimuli but by perceiving photoperiod after emergence. We found that light signal is indispensable to activate cotyledons for floral induction, and flowering promoting gene GmFT2a is required for cotyledon-dependent floral induction via upregulation of floral identity gene GmAP1. Interestingly, cotyledons are competent to support the entire life cycle of a cotyledon-only plant to produce seeds, underlying a new photoperiod study system in soybean and other dicots. Taken together, these results demonstrate a substantial role for cotyledons in flowering process, whereby we propose a 'cotyledon-based self-reliance' model highlighting floral induction from emergence as a key ecological adaptation for rapid flowering of SDPs grown in LD environments at high latitudes.


Subject(s)
Adaptation, Physiological , Cotyledon/physiology , Glycine max/physiology , China , Flowers/physiology , Gene Expression Regulation, Plant , Light , Photoperiod , Plants, Genetically Modified , Soybean Proteins/genetics
17.
Plants (Basel) ; 9(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630379

ABSTRACT

The soybean (Glycine max (L.) Merr.) is an important oil and food crop. Its growth and development is regulated by complex genetic networks, and there are still many genes with unknown functions in regulation pathways. In this study, GmNMHC5, a member of the MADS-box protein family, was found to promote flowering and maturity in the soybean. Gene expression profiling in transgenic plants confirmed that the 35S:GmNMHC5 T3 generation had early flowering and precocity. We used CRISPR-Cas9 to edit GmNMHC5 and found that late flowering and maturity occurred in Gmnmhc5 lines with stable inheritance. Remarkably, in the 35S:GmNMHC5 plants, the expression of flowering inhibitors GmFT1a and GmFT4 was inhibited. In addition, overexpression of GmNMHC5 in ft-10 (a late flowering Arabidopsis thaliana mutant lacking Flowering Locus T (FT) function) rescued the extremely late-flowering phenotype of the mutant A. thaliana. These results suggest that GmNMHC5 is a positive transcription factor of flowering and maturity in the soybean, which has a close relationship with FT homologs in the flowering regulation pathway. This discovery provides new ideas for the improvement of the flowering regulation network, and can also provide guidance for future breeding work.

18.
PLoS One ; 15(7): e0235397, 2020.
Article in English | MEDLINE | ID: mdl-32628713

ABSTRACT

Appropriate flowering and maturity time are important for soybean production. Four maturity genes E1, E2, E3 and E4 have been molecularly identified and found to play major roles in the control of flowering and maturity of soybean. Here, to further investigate the effect of different allele combinations of E1-E4, we performed Kompetitive Allele Specific PCR (KASP) assays based on single nucleotide polymorphisms (SNPs) at these four E loci, and genotyped E1-E4 genes across 308 Chinese cultivars with a wide range of maturity groups. In total, twenty-one allele combinations for E1-E4 genes were identified across these Chinese cultivars. Various combinations of mutations at four E loci gave rise to the diversity of flowering and maturity time, which were associated with the adaptation of soybean cultivars to diverse geographic regions and farming systems. In particular, the cultivars with mutations at all four E loci reached flowering and maturity very early, and adapted to high-latitude cold regions. The allele combinations e1-as/e2-ns/e3-tr/E4, E1/e2-ns/E3/E4 and E1/E2/E3/E4 played important roles in the Northeast China, Huang-Huai-Hai (HHH) Rivers Valley and South China regions, respectively. Notably, E1 and E2, especially E2, affected flowering and maturity time of soybean significantly. Our study will be beneficial for germplasm evaluation, cultivar improvement and regionalization of cultivation in soybean production.


Subject(s)
Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Genes, Developmental , Glycine max/physiology , Quantitative Trait Loci , Alleles , China , Crop Production , Farms , Flowers/growth & development , Genes, Plant , Genetic Variation , Genotype , Geography , Photoperiod , Time Factors
19.
Plant Cell Environ ; 43(4): 934-944, 2020 04.
Article in English | MEDLINE | ID: mdl-31981430

ABSTRACT

Day length has an important influence on flowering and growth habit in many plant species. In crops such as soybean, photoperiod sensitivity determines the geographical range over which a given cultivar can grow and flower. The soybean genome contains ~10 genes homologous to FT, a central regulator of flowering from Arabidopsis thaliana. However, the precise roles of these soybean FTs are not clearly. Here we show that one such gene, GmFT2b, promotes flowering under long-days (LDs). Overexpression of GmFT2b upregulates expression of flowering-related genes which are important in regulating flowering time. We propose a 'weight' model for soybean flowering under short-day (SD) and LD conditions. Furthermore, we examine GmFT2b sequences in 195 soybean cultivars, as well as flowering phenotypes, geographical distributions and maturity groups. We found that Hap3, a major GmFT2b haplotype, is associated with significantly earlier flowering at higher latitudes. We anticipate our assay to provide important resources for the genetic improvement of soybean, including new germplasm for soybean breeding, and also increase our understanding of functional diversity in the soybean FT gene family.


Subject(s)
Glycine max/physiology , Plant Proteins/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cloning, Molecular , Flowers/growth & development , Gene Editing , Gene Expression Regulation, Plant/genetics , Genetic Variation/genetics , Genetic Variation/physiology , Geography , Photoperiod , Plant Proteins/physiology , Glycine max/genetics , Glycine max/growth & development , Transcription Factors/physiology , Transcriptome
20.
Plant Biotechnol J ; 18(9): 1869-1881, 2020 09.
Article in English | MEDLINE | ID: mdl-31981443

ABSTRACT

Flowering time is a critical determinant of the geographic distribution and regional adaptability of soybean (Glycine max) and is strongly regulated by photoperiod and temperature. In this study, quantitative trait locus (QTL) mapping and subsequent candidate gene analysis revealed that GmPRR37, encoding a pseudo-response regulator protein, is responsible for the major QTL qFT12-2, which was identified from a population of 308 recombinant inbred lines (RILs) derived from a cross between a very late-flowering soybean cultivar, 'Zigongdongdou (ZGDD)', and an extremely early-flowering cultivar, 'Heihe27 (HH27)', in multiple environments. Comparative analysis of parental sequencing data confirmed that HH27 contains a non-sense mutation that causes the loss of the CCT domain in the GmPRR37 protein. CRISPR/Cas9-induced Gmprr37-ZGDD mutants in soybean exhibited early flowering under natural long-day (NLD) conditions. Overexpression of GmPRR37 significantly delayed the flowering of transgenic soybean plants compared with wild-type under long photoperiod conditions. In addition, both the knockout and overexpression of GmPRR37 in soybean showed no significant phenotypic alterations in flowering time under short-day (SD) conditions. Furthermore, GmPRR37 down-regulated the expression of the flowering-promoting FT homologues GmFT2a and GmFT5a, and up-regulated flowering-inhibiting FT homologue GmFT1a expression under long-day (LD) conditions. We analysed haplotypes of GmPRR37 among 180 cultivars collected across China and found natural Gmprr37 mutants flower earlier and enable soybean to be cultivated at higher latitudes. This study demonstrates that GmPRR37 controls soybean photoperiodic flowering and provides opportunities to breed optimized cultivars with adaptation to specific regions and farming systems.


Subject(s)
Glycine max , Photoperiod , CRISPR-Cas Systems/genetics , China , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine max/genetics , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...