Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Front Plant Sci ; 15: 1371252, 2024.
Article in English | MEDLINE | ID: mdl-38711601

ABSTRACT

Stem diameter is a critical phenotypic parameter for maize, integral to yield prediction and lodging resistance assessment. Traditionally, the quantification of this parameter through manual measurement has been the norm, notwithstanding its tedious and laborious nature. To address these challenges, this study introduces a non-invasive field-based system utilizing depth information from RGB-D cameras to measure maize stem diameter. This technology offers a practical solution for conducting rapid and non-destructive phenotyping. Firstly, RGB images, depth images, and 3D point clouds of maize stems were captured using an RGB-D camera, and precise alignment between the RGB and depth images was achieved. Subsequently, the contours of maize stems were delineated using 2D image processing techniques, followed by the extraction of the stem's skeletal structure employing a thinning-based skeletonization algorithm. Furthermore, within the areas of interest on the maize stems, horizontal lines were constructed using points on the skeletal structure, resulting in 2D pixel coordinates at the intersections of these horizontal lines with the maize stem contours. Subsequently, a back-projection transformation from 2D pixel coordinates to 3D world coordinates was achieved by combining the depth data with the camera's intrinsic parameters. The 3D world coordinates were then precisely mapped onto the 3D point cloud using rigid transformation techniques. Finally, the maize stem diameter was sensed and determined by calculating the Euclidean distance between pairs of 3D world coordinate points. The method demonstrated a Mean Absolute Percentage Error (MAPE) of 3.01%, a Mean Absolute Error (MAE) of 0.75 mm, a Root Mean Square Error (RMSE) of 1.07 mm, and a coefficient of determination (R²) of 0.96, ensuring accurate measurement of maize stem diameter. This research not only provides a new method of precise and efficient crop phenotypic analysis but also offers theoretical knowledge for the advancement of precision agriculture.

2.
Virology ; 595: 110084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692132

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Subject(s)
Ducks , Flavivirus , Poultry Diseases , Viral Nonstructural Proteins , Virus Assembly , Virus Replication , Animals , Ducks/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/genetics , Flavivirus/physiology , Poultry Diseases/virology , Flavivirus Infections/virology , Mutation
3.
Materials (Basel) ; 17(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38591616

ABSTRACT

Nowadays, high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity, rapid charging/discharging of hydrogen, and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies, there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers, including metal cylinders, carbon fiber composite cylinders, and emerging glass material-based hydrogen storage containers. Furthermore, it introduces the relevant principles and theoretical studies, showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally, this article provides an outlook on the future development of high-pressure hydrogen storage containers.

4.
Poult Sci ; 103(6): 103727, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38652953

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. Duck Tembusu virus genome encodes one polyprotein that undergoes cleavage to produce 10 proteins. Among these, NS4B, the largest transmembrane protein, plays a crucial role in the viral life cycle. In this study, we investigated the localization of NS4B and found that it is located in the endoplasmic reticulum, where it co-localizes with DTMUV dsRNA. Subsequently, we confirmed 5 different transmembrane domains of NS4B and discovered that only its transmembrane domain 3 (TMD3) can traverse ER membrane. Then mutations were introduced in the conserved amino acids of NS4B TMD3 of DTMUV replicon and infectious clone. The results showed that V111G, V117G, and I118G mutations enhanced viral RNA replication, while Q104A, T106A, A113L, M116A, H120A, Y121A, and A122G mutations reduced viral replication. Recombinant viruses with these mutations were rescued and studied in BHK21 cells. The findings demonstrated that A113L and H120A mutations led to higher viral titers than the wild-type strain, while Q104A, T106A, V111G, V117G, and Y121A mutations attenuated viral proliferation. Additionally, H120A, M116A, and A122G mutations enhanced viral proliferation. Furthermore, Q104A, T106A, V111G, M116A, V117G, Y121A, and A122G mutants showed reduced viral virulence to 10-d duck embryos. Animal experiments further indicated that all mutation viruses resulted in lower genome copy numbers in the spleen compared to the WT group 5 days postinfection. Our data provide insights into the topological model of DTMUV NS4B, highlighting the essential role of NS4B TMD3 in viral replication and proliferation.

5.
Ann Med Surg (Lond) ; 86(3): 1396-1400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463071

ABSTRACT

Background: Patients with gallbladder cancer (GBC) generally receive gemcitabine as the standard treatment; however, its efficacy is often limited owing to the development of resistance. Methods: To identify the mechanisms underlying gemcitabine resistance in GBC, a gemcitabine-resistant GBC cell line (NOZ GemR) was established by exposing the parental NOZ cell line to increasing concentrations of gemcitabine. Morphological changes, growth rates, and migratory and invasive capabilities were evaluated. Protein expression was detected using western blotting. Results: The results demonstrated that the IC50 of NOZ and NOZ GemR was 0.011 and 4.464 µM, respectively, and that the resistance index ratio was 405.8. In comparison, NOZ GemR cells grew slower and had significantly lower migration and invasion abilities than NOZ cells. There were altered levels of epithelial-mesenchymal transformation markers in NOZ GemR cells, as well as increased levels of the Akt/mTOR pathway protein. Conclusion: The NOZ GemR cell line could be used as an effective in vitro model to improve our understanding of gemcitabine resistance in GBC.

6.
Poult Sci ; 103(5): 103585, 2024 May.
Article in English | MEDLINE | ID: mdl-38492247

ABSTRACT

Goose astrovirus (GAstV) is a newly identified viral pathogen threatening waterfowl, exhibiting a high prevalence across various regions in China. Notably, the Guanghan District of Deyang City, situated in Sichuan Province, has faced a outbreak of GAstV, resulting in significant mortality among goslings due to the induction of gout-like symptoms. In our research, we successfully isolated a GAstV strain known as GAstV SCG3. This strain exhibits efficient replication capabilities, proving virulent in goslings and goose embryos. Our study delved into the characteristics of GAstV SCG3 both in vitro and in vivo. Additionally, we examined tissue phagocytosis and the distribution of GAstV SCG3 in deceased goslings using H&E staining and IHC techniques. According to the classification established by the ICTV, GAstV SCG3 falls under the category of GAstV genotype-2. Notably, it demonstrates the highest homology with the published AHAU5 sequences, reaching an impressive 98%. Furthermore, our findings revealed that GAstV SCG3 exhibits efficient proliferation exclusively in goose embryos and in LMH cells, while not manifesting in seven other types of avian and mammalian cells. Significantly, the mortality of GAstV on goslings and goose embryos are 93.1 and 80%, respectively. Moreover, the viral load in the livers of infected goslings surpasses that in the kidneys when compared with the attenuated strain GAstV SCG2. The mortality of GAstV is usually between 20% and 50%, our study marks the first report of a virulent GAstV strain with such a high mortality.


Subject(s)
Astroviridae Infections , Avastrovirus , Geese , Genotype , Poultry Diseases , Animals , Geese/virology , Poultry Diseases/virology , Poultry Diseases/mortality , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Virulence , Avastrovirus/genetics , Avastrovirus/physiology , Avastrovirus/pathogenicity , China , Phylogeny
7.
J Nanobiotechnology ; 22(1): 55, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331774

ABSTRACT

BACKGROUND: Exosomes are nanoscale extracellular vesicles (30-160 nm) with endosome origin secreted by almost all types of cells, which are considered to be messengers of intercellular communication. Cancerous exosomes serve as a rich source of biomarkers for monitoring changes in cancer-related physiological status, because they carry a large number of biological macromolecules derived from parental tumors. The ultrasensitive quantification of trace amounts of cancerous exosomes is highly valuable for non-invasive early cancer diagnosis, yet it remains challenging. Herein, we developed an aptamer-carrying tetrahedral DNA (Apt-TDNA) microelectrode sensor, assisted by a polydopamine (PDA) coating with semiconducting properties, for the ultrasensitive electrochemical detection of cancer-derived exosomes. RESULTS: The stable rigid structure and orientation of Apt-TDNA ensured efficient capture of suspended exosomes. Without PDA coating signal amplification strategy, the sensor has a linear working range of 102-107 particles mL-1, with LOD of ~ 69 exosomes and ~ 42 exosomes for EIS and DPV, respectively. With PDA coating, the electrochemical signal of the microelectrode is further amplified, achieving single particle level sensitivity (~ 14 exosomes by EIS and ~ 6 exosomes by DPV). CONCLUSIONS: The proposed PDA-assisted Apt-TDNA microelectrode sensor, which integrates efficient exosome capture, sensitive electrochemical signal feedback with PDA coating signal amplification, provides a new avenue for the development of simple and sensitive electrochemical sensing techniques in non-invasive cancer diagnosis and monitoring treatment response.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Indoles , Neoplasms , Polymers , Humans , Microelectrodes , Exosomes/chemistry , DNA/analysis , Neoplasms/diagnosis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Limit of Detection
9.
Aging (Albany NY) ; 16(1): 246-266, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38180750

ABSTRACT

The Purinergic pathway is involved in a variety of important physiological processes in living organisms, and previous studies have shown that aberrant expression of the Purinergic pathway may contribute to the development of a variety of cancers, including kidney renal clear cell carcinoma (KIRC). The aim of this study was to delve into the Purinergic pathway in KIRC and to investigate its potential significance in prognostic assessment and clinical treatment. 33 genes associated with the Purinergic pathway were selected for pan-cancer analysis. Cluster analysis, targeted drug sensitivity analysis and immune cell infiltration analysis were applied to explore the mechanism of Purinergic pathway in KIRC. Using the machine learning process, we found that combining the Lasso+survivalSVM algorithm worked well for predicting survival accuracy in KIRC. We used LASSO regression to pinpoint nine Purinergic genes closely linked to KIRC, using them to create a survival model for KIRC. ROC survival curve was analyzed, and this survival model could effectively predict the survival rate of KIRC patients in the next 5, 7 and 10 years. Further univariate and multivariate Cox regression analyses revealed that age, grading, staging, and risk scores of KIRC patients were significantly associated with their prognostic survival and were identified as independent risk factors for prognosis. The nomogram tool developed through this study can help physicians accurately assess patient prognosis and provide guidance for developing treatment plans. The results of this study may bring new ideas for optimizing the prognostic assessment and therapeutic approaches for KIRC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Prognosis , Carcinoma, Renal Cell/genetics , Nomograms , Kidney Neoplasms/genetics , Kidney
10.
Comput Struct Biotechnol J ; 23: 491-505, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38249783
11.
J Colloid Interface Sci ; 657: 903-912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091913

ABSTRACT

Epoxidation of allyl chloride and hydrogen peroxide (H2O2) carried out in heterogeneous catalytic systems suffer from poor reaction efficiency due to their heavy mass transfer resistance present at the liquid-liquid interface. Pickering interfacial catalysis (PIC) provides an elegant solution by involving the design of amphiphilic heterogeneous catalysts, which can act as emulsifiers simultaneously. In this study, interface-active polyoxometalate-loaded hyper-crosslinked nanoparticles (HCNPs) were designed. The structural properties of materials were characterized in detail by elemental analysis, Zeta potential, ICP-OES, SEM, TEM, BET, FT-IR, TGA, and XPS. The prepared nanoparticles can build efficient W/O PIC systems with allyl chloride and H2O2. Systematic experiments indicate that catalysts' surface properties, catalyst dosage, and water/oil volume ratio significantly affect the PIC system's catalytic activity and emulsion properties. Moreover, this PIC system maintains high stability after the reaction and can be reused for at least 8 cycles. Excitingly, these interface-active HCNPs can also efficiently promote allyl chloride epoxidation in the absence of solvent and external stirring, illustrating that this approach holds great potential for developing catalytic systems suitable for multiphase reactions.

12.
Adv Mater ; 36(2): e2310699, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967925

ABSTRACT

Correlated single-atom catalysts (c-SACs) with tailored intersite metal-metal interactions are superior to conventional catalysts with isolated metal sites. However, precise quantification of the single-atomic interdistance (SAD) in c-SACs is not yet achieved, which is essential for a crucial understanding and remarkable improvement of the correlated metal-site-governed catalytic reaction kinetics. Here, three Ru c-SACs are fabricated with precise SAD using a planar organometallic molecular design and π-π molecule-carbon nanotube confinement. This strategy results in graded SAD from 2.4 to 9.3 Å in the Ru c-SACs, wherein tailoring the Ru SAD into 7.0 Å generates an exceptionally high turnover frequency of 17.92 H2 s-1 and a remarkable mass activity of 100.4 A mg-1 under 50 and 100 mV overpotentials, respectively, which is superior to all the Ru-based catalysts reported previously. Furthermore, density functional theory calculations confirm that Ru SAD has a negative correlation with its d-band center owing to the long-range interactions induced by distinct local atomic geometries, resulting in an appropriate electrostatic potential and the highest catalytic activity on c-SACs with 7.0 Å Ru SAD. The present study promises an attractive methodology for experimentally quantifying the metal SAD to provide valuable insights into the catalytic mechanism of c-SACs.

13.
Front Microbiol ; 14: 1301861, 2023.
Article in English | MEDLINE | ID: mdl-38143855

ABSTRACT

Goose astrovirus (GAstV) is a small, non-enveloped, single-stranded, positive-sense RNA virus. GAstV has rapidly spread across various regions in China since 2016. In Sichuan, out of 113 samples were collected from goose diseases between 2019 and 2022, 97 were positive for GAstV through PCR testing. Remarkably, over the past three years, GAstV outbreak in Sichuan has accounted for an astonishing 85.8% of all goose-origin viruses. Among these cases, 63.9% had single GAstV infections, 29.9% had dual infections, and 6.2% had quadruple infections. To comprehend the variations in virulence among distinct strains of GAstV. 12 representative strains of single GAstV infections were isolated. These strains exhibited distinct characteristics, such as prominent white urate depositions in organs and joints, as well as extensive tissues phagocytosis in major target organs' tissues. The conserved ORF1b genes and the variable ORF2 genes of these representative GAstV strains were sequenced, enabling the establishment of phylogenetic trees for GAstV. All GAstV strains were identified as belonging to genotype-2 with varying internal gene sequences. Experiments were conducted on GAstV genotype-2, both in vivo and in vitro, revealed significant variations in pathogenicity and virulence across susceptible cells, embryos, and goslings. This comprehensive study enhances researchers' understanding of the transmission characteristics and virulence of GAstV genotype-2, aiding in a better comprehension of their molecular epidemiology and pathogenic mechanism.

14.
Acta Pharm Sin B ; 13(8): 3252-3276, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655323

ABSTRACT

Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.

15.
Cell Rep Med ; 4(9): 101189, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37729872

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and selectively sensitive to immune checkpoint inhibition (ICI). However, the joint tumor-immune states that mediate ICI response remain elusive. We develop spatially aware deep-learning models of tumor and immune features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSIs) in untreated and treated contexts (n = 1,102 patients). We identify patterns of grade heterogeneity in WSIs not achievable through human pathologist analysis, and these graph-based "microheterogeneity" structures associate with PBRM1 loss of function and with patient outcomes. Joint analysis of tumor phenotypes and immune infiltration identifies a subpopulation of highly infiltrated, microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of ccRCC, microheterogeneity associates with greater PD1 activation in CD8+ lymphocytes and increased tumor-immune interactions. Our work reveals spatially interacting tumor-immune structures underlying ccRCC biology that may also inform selective response to ICI.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Deep Learning , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Phenotype
16.
Front Cell Dev Biol ; 11: 1157841, 2023.
Article in English | MEDLINE | ID: mdl-37534104

ABSTRACT

Introduction: Reliable biomarkers are in need to predict the prognosis of hepatocellular carcinoma (HCC). Whilst recent evidence has established the critical role of copper homeostasis in tumor growth and progression, no previous studies have dealt with the copper-related genes (CRGs) signature with prognostic potential in HCC. Methods: To develop and validate a CRGs prognostic signature for HCC, we retrospectively included 353 and 142 patients as the development and validation cohort, respectively. Copper-related Prognostic Signature (Copper-PSHC) was developed using differentially expressed CRGs with prognostic value. The hazard ratio (HR) and the area under the time-dependent receiver operating characteristic curve (AUC) during 3-year follow-up were utilized to evaluate the performance. Additionally, the Copper-PSHC was combined with age, sex, and cancer stage to construct a Copper-clinical-related Prognostic Signature (Copper-CPSHC), by multivariate Cox regression. We further explored the underlying mechanism of Copper-PSHC by analyzing the somatic mutation, functional enrichment, and tumor microenvironment. Potential drugs for the high-risk group were screened. Results: The Copper-PSHC was constructed with nine CRGs. Patients in the high-risk group demonstrated a significantly reduced overall survival (OS) (adjusted HR, 2.65 [95% CI, 1.83-3.84] and 3.30, [95% CI, 1.27-8.60] in the development and validation cohort, respectively). The Copper-PSHC achieved a 3-year AUC of 0.74 [95% CI, 0.67-0.82] and 0.71 [95% CI, 0.56-0.86] for OS in the development and validation cohort, respectively. Copper-CPSHC yield a 3-year AUC of 0.73 [95% CI, 0.66-0.80] and 0.72 [95% CI, 0.56-0.87] for OS in the development and validation cohort, respectively. Higher tumor mutation burden, downregulated metabolic processes, hypoxia status and infiltrated stroma cells were found for the high-risk group. Six small molecular drugs were screened for the treatment of the high-risk group. Conclusion: Copper-PSHC services as a promising tool to identify HCC with poor prognosis and to improve disease outcomes by providing potential clinical decision support in treatment.

17.
Front Cell Dev Biol ; 11: 1200466, 2023.
Article in English | MEDLINE | ID: mdl-37305685

ABSTRACT

Urologic cancers such as kidney, bladder, prostate, and uroepithelial cancers have recently become a considerable global health burden, and the response to immunotherapy is limited due to immune escape and immune resistance. Therefore, it is crucial to find appropriate and effective combination therapies to improve the sensitivity of patients to immunotherapy. DNA damage repair inhibitors can enhance the immunogenicity of tumor cells by increasing tumor mutational burden and neoantigen expression, activating immune-related signaling pathways, regulating PD-L1 expression, and reversing the immunosuppressive tumor microenvironment to activate the immune system and enhance the efficacy of immunotherapy. Based on promising experimental results from preclinical studies, many clinical trials combining DNA damage repair inhibitors (e.g., PARP inhibitors and ATR inhibitors) with immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors) are underway in patients with urologic cancers. Results from several clinical trials have shown that the combination of DNA damage repair inhibitors with immune checkpoint inhibitors can improve objective rates, progression-free survival, and overall survival (OS) in patients with urologic tumors, especially in patients with defective DNA damage repair genes or a high mutational load. In this review, we present the results of preclinical and clinical trials of different DNA damage repair inhibitors in combination with immune checkpoint inhibitors in urologic cancers and summarize the potential mechanism of action of the combination therapy. Finally, we also discuss the challenges of dose toxicity, biomarker selection, drug tolerance, drug interactions in the treatment of urologic tumors with this combination therapy and look into the future direction of this combination therapy.

18.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299608

ABSTRACT

SF6 gas is an arc extinguishing medium that is widely used in gas insulated switchgear (GIS). When insulation failure occurs in GIS, it leads to the decomposition of SF6 in partial discharge (PD) and other environments. The detection of the main decomposition components of SF6 is an effective method to diagnose the type and degree of discharge fault. In this paper, Mg-MOF-74 is proposed as a gas sensing nanomaterial for detecting the main decomposition components of SF6. The adsorption of SF6, CF4, CS2, H2S, SO2, SO2F2 and SOF2 on Mg-MOF-74 was calculated by Gaussian16 simulation software based on density functional theory. The analysis includes parameters of the adsorption process such as binding energy, charge transfer, and adsorption distance, as well as the change in bond length, bond angle, density of states, and frontier orbital of the gas molecules. The results show that Mg-MOF-74 has different degrees of adsorption for seven gases, and chemical adsorption will lead to changes in the conductivity of the system; therefore, it can be used as a gas sensing material for the preparation of SF6 decomposition component gas sensors.

19.
Transl Oncol ; 35: 101732, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37379772

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is among the most lethal malignancies in the world, with a prognosis that is extremely poor. The results of previous studies suggest that tripartite motif containing 37 (TRIM37) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of TRIM37 in GBC. METHODS: A clinical significance assessment was conducted on TRIM37 following its detection by immunohistochemistry. In vitro and in vivo functional assays were performed to investigate the role of TRIM37 in GBC. RESULTS: In this study, TRIM37 is upregulated in GBC tissues, which is associated with decreased histological differentiation, advanced TNM stage, and shorter overall survival rates. In vitro, TRIM37 knockdown inhibited cell proliferation and promoted apoptosis, and in vivo, TRIM37 knockdown suppressed GBC growth. Contrary to this, cell proliferation is increased in GBC cells when overexpression of TRIM37 is expressed. Mechanistic investigations revealed that TRIM37 promotes GBC progression through activation of the Wnt/ß­catenin signaling pathway via degradation of Axin1. CONCLUSION: The present study suggests that TRIM37 contributes to the development of GBC and thus provides an important biomarker for predicting GBC prognosis and an effective target for therapeutic intervention.

20.
PLoS One ; 18(5): e0285730, 2023.
Article in English | MEDLINE | ID: mdl-37195919

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a serious problem in hospitals worldwide. We monitored a tertiary hospital in Changchun, Jilin Province, China, and found that CRKP was the major species among the carbapenem-resistant isolates in sewage. Subsequently, we evaluated the drug susceptibility, resistance genes, virulence genes, outer pore membrane protein-related genes (OmpK35 & OmpK 36), multi-locus sequence typing and replicons, biofilm formation capabilities, and resistance to chlorine-containing disinfectants among KP isolates. Identification of drug sensitivity, multiple resistance profiles were observed including 77 (82.80%) multidrug resistant (MDR), 16 (17.20%) extensive drug resistant (XDR). Some antibiotic resistance genes were detected, the most prevalent carbapenemase gene was blaKPC, and 16 resistance genes were associated with other antibiotics. In addition, 3 (3.23%) CRKP isolates demonstrated loss of OmpK-35 and 2 (2.15%) demonstrated loss of OmpK-36. In the detection of multi-locus sequence typing (MLST), 11 ST11 isolates carried virulence genes. The most common replicon type was IncFII. Biofilm-forming capabilities were demonstrated by 68.8% of the isolates, all of which were resistant to chlorine-containing disinfectants. The results of the study showed that antibiotic-resistant isolates, especially CRKP, could resist disinfectants in hospital wastewater, and improper treatment of hospital wastewater may lead to the spread of drug-resistant bacteria and their genes. Thus, these bacteria must be eliminated before being discharged into the municipal sewage system.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Disinfectants , Klebsiella Infections , Humans , Klebsiella pneumoniae , Multilocus Sequence Typing , Sewage , Tertiary Care Centers , Wastewater , Chlorine , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , China/epidemiology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...