Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Hazard Mater ; 473: 134572, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38772106

ABSTRACT

The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.

2.
Addict Biol ; 29(5): e13401, 2024 May.
Article in English | MEDLINE | ID: mdl-38782631

ABSTRACT

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Nucleus Accumbens , Propofol , Rats, Sprague-Dawley , Receptors, Dopamine D1 , Receptors, N-Methyl-D-Aspartate , Self Administration , Signal Transduction , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Propofol/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Male , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/drug effects , Rats , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , MAP Kinase Signaling System/drug effects
3.
Int J Ophthalmol ; 17(2): 282-288, 2024.
Article in English | MEDLINE | ID: mdl-38371261

ABSTRACT

AIM: To define the predictive factors of severe retinopathy of prematurity (ROP) and develop a nomogram for predicting severe ROP in southeast China. METHODS: Totally 554 infants diagnosed with ROP hospitalized in the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University and hospitalized in Taizhou Women and Children's Hospital were included. Clinical data and 43 candidate predictive factors of ROP infants were collected retrospectively. Logistic regression model was used to identify predictive factors of severe ROP and to propose a nomogram for individual risk prediction, which was compared with WINROP model and Digirop-Birth model. RESULTS: Infants from the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (n=478) were randomly allocated into training (n=402) and internal validation group (n=76). Infants from Taizhou Women and Children's Hospital were set as external validation group (n=76). Severe ROP were found in 52 of 402 infants, 12 of 76 infants, and 7 of 76 infants in training group, internal validation group, and external validation group, respectively. Birth weight [odds ratio (OR), 0.997; 95% confidence interval (CI), 0.996-0.999; P<0.001], multiple births (OR, 1.885; 95%CI, 1.013-3.506; P=0.045), and non-invasive ventilation (OR, 0.288; 95%CI, 0.146-0.570; P<0.001) were identified as predictive factors for the prediction of severe ROP, by univariate analysis and multivariate analysis. For predicting severe ROP based on the internal validation group, the areas under receiver operating characteristic curve (AUC) was 78.1 (95%CI, 64.2-92.0) for the nomogram, 32.9 (95%CI, 15.3-50.5) for WINROP model, 70.2 (95%CI, 55.8-84.6) for Digirop-Birth model. In external validation group, AUC of the nomogram was also higher than that of WINROP model and Digirop-Birth model (80.2 versus 51.1 and 63.4). The decision curve analysis of the nomogram demonstrated better clinical efficacy than that of WINROP model and Digirop-Birth model. The calibration curves demonstrated a good consistency between the actual severe ROP incidence and the predicted probability. CONCLUSION: Birth weight, multiple births, and non-invasive ventilation are independent predictors of severe ROP. The nomogram has a good ability to predict severe ROP and performed well on internal validation and external validation in southeast China.

4.
Small ; : e2308952, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072789

ABSTRACT

To address charge recombination in photocatalysis, the prevalent approach involves the use of noble metal cocatalysts. However, the precise factors influencing this performance variability based on cocatalyst selection have remained elusive. In this study, CdS hollow spheres loaded with distinct noble metal nanoparticles (Pt, Au, and Ru) are investigated by femtosecond transient absorption (fs-TA) spectroscopy. A more pronounced internal electric field leads to the creation of a larger Schottky barrier, with the order Pt-CdS > Au-CdS > Ru-CdS. Owing to these varying Schottky barrier heights, the interface electron transfer rate (Ke ) and efficiency (ηe ) of metal-CdS in acetonitrile (ACN) exhibit the following trend: Ru-CdS > Au-CdS > Pt-CdS. However, the trends of Ke and ηe for metal-CdS in water are different (Ru-CdS > Pt-CdS > Au-CdS) due to the influence of water, leading to the consumption of photogenerated electrons and affecting the metal/CdS interface state. Although Ru-CdS displays the highest Ke and ηe , its overall photocatalytic performance, particularly in H2 production, lags behind that of Pt-CdS due to the electron backflow from Ru to CdS. This work offers a fresh perspective on the origin of performance differences and provides valuable insights for cocatalyst design and construction.

6.
Polymers (Basel) ; 15(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37571208

ABSTRACT

Detergency determination for single polymeric fibers is of significant importance to screening effective detergents for laundry, but remains challenging. Herein, we demonstrate a novel and effective method to quantify the detergency for single polymeric fibers using a confocal laser scanning microscope (CLSM). It was applied to visualize the oil-removing process of single polymeric fibers and thus assess the detergency of various detergents. Four typical surfactants were selected for comparison, and a compounded detergent containing multiple components (e.g., anionic and nonionic surfactants, enzymes) was demonstrated to be the most effective and powerful soil-removing detergent because more than 50% of oil on the cotton fiber could be easily removed. Moreover, the oil removal process of three kinds of fibers (i.e., cotton, viscose, and polyester) was imaged and monitored by confocal microscopy. It was found that the percentage of the detergency of a single polyester fiber exceeded 70%, which is much higher than that of cotton and viscose fibers (~50%), which may be due to its relatively smooth surface. Compared to traditional methods, the CLSM imaging method is more feasible and effective to determine the detergency of detergents for single polymeric fibers.

7.
Pharm Biol ; 61(1): 1000-1012, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37410551

ABSTRACT

CONTEXT: Hyperoside (Hyp), one of the active flavones from Rhododendron (Ericaceae), has beneficial effects against cerebrovascular disease. However, the effect of Hyp on vasodilatation has not been elucidated. OBJECTIVE: To explore the effect of Hyp on vasodilatation in the cerebral basilar artery (CBA) of Sprague-Dawley (SD) rats suffering with ischaemic-reperfusion (IR) injury. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into sham, model, Hyp, Hyp + channel blocker and channel blocker groups. Hyp (50 mg/kg, IC50 = 18.3 µg/mL) and channel blocker were administered via tail vein injection 30 min before ischaemic, followed by 20 min of ischaemic and 2 h of reperfusion. The vasodilation, hyperpolarization, ELISA assay, haematoxylin-eosin (HE), Nissl staining and channel-associated proteins and qPCR were analysed. Rat CBA smooth muscle cells were isolated to detect the Ca2+ concentration and endothelial cells were isolated to detect apoptosis rate. RESULTS: Hyp treatment significantly ameliorated the brain damage induced by IR and evoked endothelium-dependent vasodilation rate (47.93 ± 3.09% vs. 2.99 ± 1.53%) and hyperpolarization (-8.15 ± 1.87 mV vs. -0.55 ± 0.42 mV) by increasing the expression of IP3R, PKC, transient receptor potential vanilloid channel 4 (TRPV4), IKCa and SKCa in the CBA. Moreover, Hyp administration significantly reduced the concentration of Ca2+ (49.08 ± 7.74% vs. 83.52 ± 6.93%) and apoptosis rate (11.27 ± 1.89% vs. 23.44 ± 2.19%) in CBA. Furthermore, these beneficial effects of Hyp were blocked by channel blocker. DISCUSSION AND CONCLUSIONS: Although Hyp showed protective effect in ischaemic stroke, more clinical trial certification is needed due to the difference between animals and humans.


Subject(s)
Antineoplastic Agents , Brain Ischemia , Reperfusion Injury , Stroke , Humans , Rats , Animals , Rats, Sprague-Dawley , TRPV Cation Channels/metabolism , Endothelial Cells , Brain Ischemia/drug therapy , Stroke/metabolism , Vasodilation , Antineoplastic Agents/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism
8.
Addict Biol ; 28(8): e13310, 2023 08.
Article in English | MEDLINE | ID: mdl-37500486

ABSTRACT

Propofol addictive properties have been demonstrated in humans and rats. The glutamatergic transmission from basolateral nucleus of amygdala (BLA) to the nucleus accumbens (NAc) modulates reward-seeking behaviour; especially, NAc shell (NAsh) is implicated in reward-seeking response. Previous studies indicated the interactions between AMPA receptors (AMPARs) and dopamine D1 receptor (D1R) in NAc mediated drug addiction, but whether the circuit of BLA-to-NAsh and AMPARs regulate propofol addiction remains unclear. We trained adult male Sprague-Dawley rats for propofol self-administration to examine the changes of action potentials (APs) and spontaneous excitatory postsynaptic currents (sEPSCs) in the NAsh. Thereafter, optogenetic stimulation with adeno-associated viral vectors microinjections in BLA was used to explore the effect of BLA-to-NAsh on propofol self-administration behaviour (1.7 mg/kg/injection). The pretreatment effects with NBQX (0.25-1.0 µg/0.3 µl/site) or vehicle in the NAsh on propofol self-administration behaviour, the expressions of AMPARs subunits and D1R/ERK/CREB signalling pathway in the NAc were detected. The results showed that the number of APs, amplitude and frequency of sEPSCs were enhanced in propofol self-administrated rats. Propofol self-administration was inhibited in the NpHR3.0-EYFP group, but in the ChR2-EYFP group, there was a promoting effect, which could be weakened by NBQX pretreatment. NBQX pretreatment also significantly decreased the expressions of GluA2 subunit and D1R in the NAc but did not change the expressions of GluA1 and ERK/CREB signalling pathway. The evidence supports a vital role of BLA-to-NAsh circuit in regulating propofol self-administration and suggests this central reward processing may function through the interaction between AMPARs and D1R in the NAsh.


Subject(s)
Non-alcoholic Fatty Liver Disease , Propofol , Humans , Rats , Male , Animals , Propofol/pharmacology , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Nucleus Accumbens , Non-alcoholic Fatty Liver Disease/metabolism , Amygdala , Receptors, Dopamine D1/metabolism
9.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3046-3054, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37381963

ABSTRACT

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Subject(s)
Ferroptosis , Animals , Rats , PC12 Cells , Ferroptosis/genetics , Reactive Oxygen Species , Transcription Factors , Glutathione
11.
Zhongguo Zhong Yao Za Zhi ; 48(2): 455-464, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725235

ABSTRACT

This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 µg·mL~(-1)) group, and TFR(30 µg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.


Subject(s)
Brain Ischemia , Flavonoids , Reperfusion Injury , Animals , Male , Rats , Apoptosis , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Brain Ischemia/metabolism , Caspase 3 , Interleukin-1 , Interleukin-6 , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha/genetics , Flavonoids/pharmacology , Rhododendron/chemistry
12.
Anal Methods ; 15(6): 771-777, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36683583

ABSTRACT

Electroreductive dehalogenation as an efficient and green approach has attracted much attention in pollution remediation. Herein, we have employed a shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique to in situ probe the electroreductive dehalogenation process of aryl halides with thiol groups at Ag/aqueous solution interfaces. It is found that 4-bromothiophenol (BTP) and 4-chlorothiophenol (CTP) can turn into mixed products of 4,4'-biphenyldithiol (BPDT) and thiophenol (TP) as the electrode potential decreases. The conversion ratios estimated from the Raman intensity variations of C-Cl and C-Br vibrations are 44% and 58% for CTP and BTP in neutral solution, respectively. Furthermore, the quantitative analysis of benzene ring vibrations reveals a C-C cross coupling between the benzene free radical intermediate and adjacent TP product, which results in increased selectivity for biphenyl products at negative potentials.

13.
Mol Psychiatry ; 28(6): 2343-2354, 2023 06.
Article in English | MEDLINE | ID: mdl-36690791

ABSTRACT

The comorbidity of autism spectrum disorder and anxiety is common, but the underlying circuitry is poorly understood. Here, Tmem74-/- mice showed autism- and anxiety-like behaviors along with increased excitability of pyramidal neurons (PNs) in the prelimbic cortex (PL), which were reversed by Tmem74 re-expression and chemogenetic inhibition in PNs of the PL. To determine the underlying circuitry, we performed conditional deletion of Tmem74 in the PNs of PL of mice, and we found that alterations in the PL projections to fast-spiking interneurons (FSIs) in the dorsal striatum (dSTR) (PLPNs-dSTRFSIs) mediated the hyperexcitability of FSIs and autism-like behaviors and that alterations in the PL projections to the PNs of the basolateral amygdaloid nucleus (BLA) (PLPNs-BLAPNs) mediated the hyperexcitability of PNs and anxiety-like behaviors. However, the two populations of PNs in the PL had different spatial locations, optogenetic manipulations revealed that alterations in the activity in the PL-dSTR or PL-BLA circuits led to autism- or anxiety-like behaviors, respectively. Collectively, these findings highlight that the hyperactivity of the two populations of PNs in the PL mediates autism and anxiety comorbidity through the PL-dSTR and PL-BLA circuits, which may lead to the development of new therapeutics for the autism and anxiety comorbidity.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Basolateral Nuclear Complex , Mice , Animals , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Cerebral Cortex , Anxiety , Prefrontal Cortex
14.
BMC Gastroenterol ; 22(1): 378, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941537

ABSTRACT

BACKGROUND: The stromal antigen 3 (STAG3) gene encodes an adhesion complex subunit that can regulate sister chromatid cohesion during cell division. Chromosome instability caused by STAG3 gene mutation may potentially promote tumor progression, but the effect of STAG3 on hepatocellular carcinoma (HCC) and the related molecular mechanism are not reported in the literature. The mechanism of the occurrence and development of HCC is not adequately understood. Therefore, the biological role of STAG3 in HCC remains to be studied, and whether STAG3 might be a sensitive therapeutic target in HCC remains to be determined. METHODS: The expression and clinical significance of STAG3 in HCC tissues and cell lines were determined by RT-qPCR and immunohistochemistry analyses. The biological functions of STAG3 in HCC were determined through in vitro and in vivo cell function tests. The molecular mechanism of STAG3 in HCC cells was then investigated by western blot assay. RESULTS: The mRNA expression of STAG3 was lower in most HCC cells than in normal cells. Subsequently, an immunohistochemical analysis of STAG3 was performed with 126 samples, and lower STAG3 expression was associated with worse overall survival in HCC patients. Moreover, cytofunctional tests revealed that the lentivirus-mediated overexpression of STAG3 in HCC cells inhibited cell proliferation, migration, and invasion; promoted apoptosis; induced G1/S phase arrest in vitro; and inhibited tumor growth in vivo. Furthermore, studies of the molecular mechanism suggested that the overexpression of STAG3 increased Smad3 expression and decreased CDK4, CDK6, cyclin D1, CXCR4 and RhoA expression. CONCLUSION: STAG3 exhibits anticancer effects against HCC, and these effects involve the Smad3-CDK4/CDK6-cyclin D1 and CXCR4/RhoA pathways. STAG3 is a tumor-suppressor gene that may serve as a potential target for molecular therapy, which provides a new idea for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6 , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Receptors, CXCR4 , Smad3 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/pharmacology , Up-Regulation , rhoA GTP-Binding Protein/genetics
15.
Eur J Epidemiol ; 37(8): 871-880, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35856127

ABSTRACT

The Diverse Life-Course Cohort (DLCC) is a large-scale prospective study including around 130,000 participants in mainland China. The primary aims of DLCC include contributing to knowledge on noncommunicable chronic disease determinants, particularly cardiometabolic diseases, and exploring the long-term effect of ambient air pollutants or other environmental risk factors on health among all-age populations. The cohort consists of several sub-populations that cover the whole life-course and diverse resources: from premarital to adolescents, adults from workplace and communities ranged from 18 to 93 years old. Baseline assessment (2017-2021) included face-to-face standardized questionnaire interview and measurements to assess social and biological factors of health. Blood samples were collected from each participant (except for children younger than 6) to establish the biobank. DLCC consists of two visits. Visit 1 was conducted from 2017, and 114850 individuals from one of the world-class urban agglomerations: Beijing, Tianjin, and Hebei area were recruited. By the end of 2021, at least one follow-up was carried out, with an overall follow-up rate of 92.33%. In 2021, we initiated Visit 2, newly recruited 9,866 adults from Guangdong province (South China) and Hebei province (Central China), with research focuses on the comparations on ambient pollution hazards and other unique dietary or environmental risks for health. The baseline survey of Visit 2 was finished in July 2021. DLCC is still ongoing with a long-term follow-up design, and not limited by the current funding period. With reliable data and the well-established biobank which consists of over 120,000 individuals' blood samples, DLCC will provide invaluable resources for scientific research.


Subject(s)
Air Pollutants , Air Pollution , Adolescent , Adult , Aged , Aged, 80 and over , Air Pollutants/adverse effects , Air Pollution/adverse effects , Child , China/epidemiology , Cohort Studies , Environmental Monitoring/methods , Humans , Middle Aged , Particulate Matter , Prospective Studies , Young Adult
16.
Signal Transduct Target Ther ; 7(1): 229, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35817793

ABSTRACT

Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/therapy , Epigenesis, Genetic , Humans , Signal Transduction/genetics
17.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3828-3836, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850841

ABSTRACT

This paper explored the protective effect of total flavonoids of Rhododendron simsii(TFR) on focal cerebral ischemia-reperfusion injury(CIRI) in rats and its relationship with the store-operated calcium entry(SOCE) pathway regulated by stromal intera-ction molecule(STIM) and calcium release-activated calcium modulator(Orai).Rats were randomly assigned into the sham group, model(middle cerebral artery occlusion, MCAO) group, TFR(60 mg·kg~(-1)) group, TFR(60 mg·kg~(-1))+SOCE pathway inhibitor 2-aminoethoxydiphenyl borate(2-APB, 2.5 mg·kg~(-1)) group, and 2-APB(2.5 mg·kg~(-1)) group.The rats in the sham group and MCAO group were administrated with normal saline, and those in the TFR group and TFR+2-APB group were administrated with TFR(60 mg·kg~(-1)) by gavage for 14 days until sampling.The rats in the 2-APB group and TFR+2-APB group were intraperitoneally injected with 2-APB(2.5 mg·kg~(-1)) after operation.The levels of interleukin-1(IL-1), interleukin-6(IL-6), and tumor necrosis factor-alpha(TNF-α) in serum were measured by ELISA.The cerebral infarction and the pathological status of ischemic brain tissue were detected via TTC staining and HE staining, respectively.The protein and mRNA levels of STIM1, STIM2, Orai1, cysteinyl aspartate specific proteinase 3(caspase-3), and protein kinase B(PKB) in brain tissue were respectively determined by Western blot and RT-qPCR.The growth of brain neurons in each group was observed via immunofluorescence method.The results showed that compared with the MCAO group, TFR lowered the levels of IL-1, IL-6 and TNF-α in serum and the score of neurological function, ameliorated the pathological injury of brain tissue, and decreased the infarct size.Moreover, TFR up-regulated the mRNA and protein levels of STIM1, STIM2, Orai1, and PKB, down-regulated those of caspase-3 in brain tissue, and increased the double-labeled positive cells under fluorescence microscope.However, the above effects were significantly weakened by the addition of 2-APB, a SOCE inhibitor.The results suggested that TFR may play a protective role against focal cerebral ischemia-reperfusion injury by up-regulating the expression of SOCE-related signal molecules, promoting neurogenesis around the ischemic area, improving the survival state of neurons, and redu-cing the activity of inflammatory mediators.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rhododendron , Animals , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Brain Ischemia/metabolism , Calcium/metabolism , Caspase 3 , Flavonoids , Interleukin-1 , Interleukin-6 , RNA, Messenger/genetics , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Tumor Necrosis Factor-alpha/genetics
18.
Oncogene ; 41(29): 3680-3693, 2022 07.
Article in English | MEDLINE | ID: mdl-35725908

ABSTRACT

Ankyrin repeat and fibronectin type III domain containing 1 (ANKFN1) is reported to be involved in human height and developmental abnormalities, but the expression profile and molecular function of ANKFN1 in hepatocellular carcinoma (HCC) remain unknown. This study aimed to evaluate the clinical significance and biological function of ANKFN1 in HCC and investigate whether ANKFN1 can be used for differential diagnosis in HCC. Here, we showed that ANKFN1 was upregulated in 126 tumor tissues compared with adjacent nontumorous tissues in HCC patients. The upregulation of ANKFN1 in HCC was associated with cirrhosis, alpha-fetoprotein (AFP) levels and poor prognosis. Moreover, silencing ANKFN1 expression suppressed HCC cell proliferation, migration, invasion, and metastasis in vitro and subcutaneous tumorigenesis in vivo. However, ANKFN1 overexpression promoted HCC proliferation and metastasis in an orthotopic liver transplantation model and attenuated the above biological effects in HCC cells. ANKFN1 significantly affected HCC cell proliferation by inducing G1/S transition and cell apoptosis. Mechanistically, we demonstrated that ANKFN1 promoted cell proliferation, migration, and invasion via activation of the cyclin D1/Cdk4/Cdk6 pathway by stimulating the MEK1/2-ERK1/2 pathway. Moreover, ANKFN1-induced cell proliferation, migration, and invasion were partially reversed by ERK1/2 inhibitors. Taken together, our results indicate that ANKFN1 promotes HCC cell proliferation and metastasis by activating the MEK1/2-ERK1/2 signaling pathway. Our work also suggests that ANKFN1 is a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology
20.
Chem Commun (Camb) ; 58(32): 4962-4965, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35388389

ABSTRACT

Significant variability issues in metal-molecule contacts, such as adsorption geometry, lead to characteristic variability in the electrical responses of individual molecules. Herein, co-assembling 1-ethylimidazole (EIM) on Au(111) has been shown to be a feasible and effective strategy for tuning the binding configurations of pyridine-linked molecular junctions in the most common aqueous environments and atmospheric environments. The single-molecule conductance measurements clearly show a transition from multiple conductance peaks to a single conductance peak with increasing EIM concentration. Raman spectroscopy and DFT calculations suggest that the thermodynamically favorable EIM adsorbate results in the vertical orientation of the bipyridine.

SELECTION OF CITATIONS
SEARCH DETAIL
...