Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; : 1-10, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634368

ABSTRACT

Malnutrition significantly hampers wound healing processes. This study aimed to compare the effectiveness of the Global Leadership Initiative on Malnutrition (GLIM) and Subjective Global Assessment (SGA) in diagnosing malnutrition and predicting wound healing in patients with diabetic foot ulcers (DFU). GLIM criteria were evaluated for sensitivity (SE), specificity (SP), positive predictive value, negative predictive value and kappa (κ) against SGA as the reference. Modified Poisson regression model and the DeLong test investigated the association between malnutrition and non-healing ulcers over 6 months. This retrospective cohort study included 398 patients with DFU, with a mean age of 66·3 ± 11·9 years. According to SGA and GLIM criteria, malnutrition rates were 50·8 % and 42·7 %, respectively. GLIM criteria showed a SE of 67·3 % (95 % CI 60·4 %, 73·7 %) and SP of 82·7 % (95 % CI 76·6 %, 87·7 %) in identifying malnutrition, with a positive predictive value of 80·0 % and a negative predictive value of 71·1 % (κ = 0·50) compared with SGA. Multivariate analysis demonstrated that malnutrition, as assessed by SGA, was an independent risk factor for non-healing (relative risk (RR) 1·84, 95 % CI 1·45, 2·34), whereas GLIM criteria were associated with poorer ulcer healing in patients with estimated glomerular filtration rate ≥ 60 ml/min/1·73m2 (RR: 1·46, 95 % CI 1·10, 1·94). SGA demonstrated a superior area under the receiver's operating characteristic curve for predicting non-healing compared with GLIM criteria (0·70 (0·65-0·75) v. 0·63 (0·58-0·65), P < 0·01). These findings suggest that both nutritional assessment tools effectively identify patients with DFU at increased risk, with SGA showing superior performance in predicting non-healing ulcers.

2.
J Biochem Mol Toxicol ; 38(4): e23683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483099

ABSTRACT

Cellular senescence and iron accumulation were separately observed in diabetic nephropathy (DN). Limited evidence supports that iron was significantly accumulated in senescent cells. We aimed to explore whether iron is involved in the pathogenesis role of senescence in DN. Renal cells were treated with high glucose (HG, 35 mM) for 10 or 15 days, and DN mice were induced by high-fat diet and streptozotocin. Gene ontology enrichment, gene set enrichment analysis analysis, ß-galactosidase staining, 5-ethynyl-2-deoxyuridine staining, and western blot depicted the upregulated senescence pathway in vitro and in vivo of DN. Lactate dehydrogenase (LDH) release was increased by HG and reversed by p16/p21 knockdown, and the supernatant of HG-treated cells caused increased LDH release from normal cells. Iron metabolism-related protein expression was disordered after HG exposure concomitant with senescence. Ferric ammonium citrate (50 µM) upregulated gamma-H2A.X variant histone and increased the senescence markers in HG-treated cells. The treatment of deferoxamine (0.5 µM) had the opposite effect. Compared to the non-DN individual, increased ferritin and senescence markers were verified in DN mice and patients, and the co-localization of ferritin and senescence markers was observed by immunofluorescence. These results suggested that accumulated iron was correlated with aggravated DNA damage and accelerated senescence, and revealed the role of iron in the cellular senescence of diseases.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Iron Overload , Humans , Mice , Animals , Diabetic Nephropathies/metabolism , Kidney/metabolism , Iron/pharmacology , Ferritins , Glucose/pharmacology , Cellular Senescence
SELECTION OF CITATIONS
SEARCH DETAIL