Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954541

ABSTRACT

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Subject(s)
Extracellular Matrix , Hydrogels , Mesenchymal Stem Cells , Spheroids, Cellular , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Extracellular Matrix/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Humans , Cell Differentiation , Cell Culture Techniques/methods , Cell Proliferation , Porosity , Mechanotransduction, Cellular/physiology , Cells, Cultured
2.
Transl Oncol ; 47: 102040, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954975

ABSTRACT

BACKGROUND AND PURPOSE: Regorafenib was approved by the US Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) patients showing progress on sorafenib treatment. However, there is an inevitably high rate of drug resistance associated with regorafenib, which reduces its effectiveness in clinical treatment. Thus, there is an urgent need to find a potential way to solve the problem of regorafenib resistance. The metabolite of disulfiram complexed with copper, the Diethyldithiocarbamate-copper complex (CuET), has been found to be an effective anticancer drug candidate. In the present study, we aimed to evaluate the effect of CuET on regorafenib resistance in HCC and uncover the associated mechanism. EXPERIMENTAL APPROACH: Regorafenib-resistant HCC strains were constructed by applying an increasing concentration gradient. This study employed a comprehensive range of methodologies, including the cell counting kit-8 (CCK-8) assay, colony formation assay, cell cycle analysis, wound healing assay, Transwell assay, tumor xenograft model, and immunohistochemical analysis. These methods were utilized to investigate the antitumor activity of CuET, assess the combined effect of regorafenib and CuET, and elucidate the molecular mechanism underlying CuET-mediated regorafenib resistance. KEY RESULTS: The inhibitory effect of regorafenib on cell survival, proliferation and migration was decreased in regorafenib-resistant MHCC-97H (MHCC-97H/REGO) cells compared with parental cells. CuET demonstrated significant inhibitory effects on cell survival, proliferation, and migration of various HCC cell lines. CuET restored the sensitivity of MHCC-97H/REGO HCC cells to regorafenib in vitro and in vivo. Mechanistically, CuET reverses regorafenib resistance in HCC by suppressing epithelial-mesenchymal transition (EMT) through inhibition of the ERK signaling pathway. CONCLUSION AND IMPLICATIONS: Taken together, the results of this study demonstrated that CuET inhibited the activation of the ERK signaling pathway, leading to the suppression of the epithelial-mesenchymal transition (EMT) and subsequently reversing regorafenib resistance in HCC both in vivo and in vitro. This study provides a new idea and potential strategy to improve the treatment of regorafenib-resistant HCC.

3.
ACS Synth Biol ; 13(8): 2295-2312, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39002162

ABSTRACT

Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.


Subject(s)
Synthetic Biology , Synthetic Biology/methods , Bioprinting/methods , Tissue Engineering/methods , Biocompatible Materials/chemistry , Humans , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Animals
4.
Cancer Commun (Lond) ; 44(7): 791-832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923737

ABSTRACT

Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.


Subject(s)
Neoplasms , Phagocytosis , Signal Transduction , Humans , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction/immunology , Animals , Phagocytes/immunology , Apoptosis
5.
Trends Mol Med ; 30(6): 527-529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521716

ABSTRACT

MORF4 (mortality factor on chromosome 4)-related gene 15 (MRG15) is a chromodomain protein that exists in various multiprotein complexes involved in transcription, DNA repair, and development. Here we summarize the recent advances involving MRG15 in modulating liver metabolism, both through its chromatin-binding capability and independently of it, highlighting MRG15 as a potential therapeutic target for liver metabolic diseases.


Subject(s)
Liver Diseases , Humans , Animals , Liver Diseases/metabolism , Liver Diseases/genetics , Liver Diseases/pathology , Liver/metabolism , Liver/pathology , Metabolic Diseases/metabolism , Metabolic Diseases/genetics
6.
FEBS Open Bio ; 14(5): 831-842, 2024 May.
Article in English | MEDLINE | ID: mdl-38531630

ABSTRACT

The important role of cholesterol in tumor metastasis has been widely studied in recent years. Ezetimibe is currently the only selective cholesterol uptake inhibitor on the market. Here, we explored the effect of ezetimibe on breast cancer metastasis by studying its impact on breast cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT). Differential gene expression analysis and validation were also carried out to compare ezetimibe-treated and untreated breast cancer cells. Finally, breast cancer cells overexpressing TGFß2 were constructed, and the effect of TGFß2 on the migration and invasion of ezetimibe-treated breast cancer cells was examined. Our results show that ezetimibe treatment of breast cancer cells inhibited cell migration, invasion, and EMT, and it significantly suppressed the expression of TGFß2. Overexpression of TGFß2 reversed the inhibitory effect of ezetimibe on the migration and invasion of breast cancer cells. Taken together, our results suggest that ezetimibe might be a potential candidate for the treatment of breast cancer metastasis.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Ezetimibe , Transforming Growth Factor beta2 , Triple Negative Breast Neoplasms , Humans , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Ezetimibe/pharmacology , Transforming Growth Factor beta2/metabolism , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic/drug effects
7.
Opt Lett ; 49(5): 1301-1304, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426998

ABSTRACT

Bound state in the continuum (BIC) is a phenomenon that describes the perfect confinement of electromagnetic waves despite their resonant frequencies lying in the continuous radiative spectrum. BICs can be realized by introducing a destructive interference between distinct modes, referred to as Friedrich-Wintgen BICs (FW-BICs). Herein, we demonstrate that FW-BICs can be derived from coupled modes of individual split-ring resonators (SRR) in the terahertz band. The eigenmode results manifest that FW-BICs are in the center of the far-field polarization vortices. Quasi-BIC-I keeps an ultrahigh quality factor (Q factor) in a broad momentum range along the Γ-X direction, while the Q factor of the quasi-BIC-II drops rapidly. Our results can facilitate the design of devices with high-Q factors with extreme robustness against the incident angle.

8.
Opt Express ; 32(3): 3241-3250, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297550

ABSTRACT

Optical zoom plays an important role in realizing high-quality image magnification, especially in photography, telescopes, microscopes, etc. Compared to traditional bulky zoom lenses, the high versatility and flexibility of metalens design provide opportunities for modern electronic and photonic systems with demands for miniature and lightweight optical zoom. Here, we propose an ultra-thin, lightweight and compact bifocal zoom metalens, which consists of a conventional circular sub-aperture and a sparse annular sub-aperture with different focal lengths. The imaging resolutions of such single zoom metalens with 164 lp/mm and 117 lp/mm at magnifications of 1× and 2× have been numerically and experimentally demonstrated, respectively. Furthermore, clear zoom images of a dragonfly wing pattern have been also achieved using this zoom metalens, showing its distinctive aspect in biological imaging. Our results provide an approach for potential applications in integrated optical systems, miniaturized imaging devices, and wearable devices.

9.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38375821

ABSTRACT

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Subject(s)
Colorectal Neoplasms , Integrin beta4 , Kalinin , Myogenic Regulatory Factors , Proto-Oncogene Proteins c-akt , Humans , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Integrin beta4/genetics , Integrin beta4/metabolism , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Oxaliplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Kalinin/genetics , Kalinin/metabolism
10.
Heliyon ; 9(11): e21343, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027998

ABSTRACT

Cholesterol levels were strongly associated with tumor progression and metastasis. Targeted cholesterol metabolism has broad prospects in tumor treatment. Ezetimibe, the only FDA-approved inhibitor of cholesterol absorption, has been reported to be able to inhibit angiogenesis in liver cancer. However, the efficacy and specific mechanisms of Ezetimibe in the treatment of Triple-Negative Breast Cancer (TNBC)have not been reported. Our research shows Ezetimibe inhibits TNBC cell proliferation and blocks the cell cycle in the G1 phase. Mechanistically, Ezetimibe inhibits the activation of PDGFRß/AKT pathway, thereby promoting cell cycle arrest and inhibiting cell proliferation. By overexpressing PDGFRß in TNBC cells, we found that PDGFRß significantly reduced the inhibitory effect of Ezetimibe on TNBC cell proliferation and the cell cycle. Similarly, SC79, an AKT agonist, can reduce the proliferation inhibitory and cycle-blocking effects of Ezetimibe on TNBC cells. Furthermore, the AKT inhibitor MK2206 enhanced the inhibitory effect of Ezetimibe on the cell cycle and proliferation ability of TNBC cells overexpressing PDGFRß. In xenograft tumor models, we also found that Ezetimibe inhibited TNBC growth, an effect that can be blocked by overexpression of PDGFR or activation of AKT. In summary, we have demonstrated that EZ inhibits the PDGFR/AKT pathway, thereby halting TNBC cycle progression and tumor growth.

11.
Int J Med Sci ; 20(12): 1616-1630, 2023.
Article in English | MEDLINE | ID: mdl-37859699

ABSTRACT

Purpose: Acute liver failure (ALF) is a clinically fatal disease that leads to the rapid loss of normal liver function. Acetaminophen (APAP) is a leading cause of drug-induced ALF. Ferroptosis, defined as iron-dependent cell death associated with lipid peroxide accumulation, has been shown to be strongly associated with APAP-induced liver injury. Growth arrest-specific 1 (GAS1) is a growth arrest-specific gene, which is closely related to the inhibition of cell growth and promotion of apoptosis. However, the functional role and underlying mechanism of GAS1 in APAP-induced ferroptosis remain unknown. Methods: We established liver-specific overexpression of GAS1 (GAS1AAV8-OE) mice and the control (GAS1AAV8-vector) mice by tail vein injection of male mice with adeno-associated virus. APAP at 500 mg/kg was intraperitoneally injected into these two groups of mice to induce acute liver failure. The shRNA packaged by the lentivirus inhibits GAS1 gene expression in human hepatoma cell line HepaRG (HepaRG-shNC and HepaRG-shGAS1-2) and primary hepatocytes of mice with liver-specific overexpression of GAS1 were isolated and induced by APAP in vitro to further investigate the regulatory role of GAS1 in APAP-induced acute liver failure. Results: APAP-induced upregulation of ferroptosis, levels of lipid peroxides and reactive oxygen species, and depletion of glutathione were effectively alleviated by the ferroptosis inhibitor, ferrostatin-1, and downregulation of GAS1 expression. GAS1 overexpression promoted ferroptosis-induced lipid peroxide accumulation via p53, inhibiting its downstream target, solute carrier family 7 member 11. Conclusion: Collectively, our findings suggest that GAS1 overexpression plays a key role in aggravating APAP-induced acute liver injury by promoting ferroptosis-induced accumulation of lipid peroxides.


Subject(s)
Ferroptosis , Liver Failure, Acute , Animals , Humans , Male , Mice , Acetaminophen/toxicity , Cell Cycle Proteins/metabolism , Ferroptosis/genetics , GPI-Linked Proteins/metabolism , Hepatocytes/metabolism , Lipid Peroxides/metabolism , Liver , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice, Inbred C57BL
12.
Cell Biosci ; 13(1): 188, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37828613

ABSTRACT

Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.

13.
Nanomaterials (Basel) ; 13(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570503

ABSTRACT

Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.

14.
Cancer Med ; 12(17): 18078-18097, 2023 09.
Article in English | MEDLINE | ID: mdl-37563971

ABSTRACT

BACKGROUND: Ubiquitin-conjugating enzyme E2S (UBE2S), an E2 enzyme, is associated with the development of various tumors and exerts oncogenic activities. UBE2S is overexpressed in tumors, including hepatocellular carcinoma (HCC). However, the key molecular mechanisms of UBE2S in HCC still need additional research. The aim of this study was to explore the role of UBE2S in HCC. METHODS: The expression levels of UBE2S in HCC tissues and cells were detected by western blot analysis, quantitative real-time polymerase chain reaction analysis (qRT-PCR), and immunohistochemistry (IHC). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, colony formation assay transwell assay, and animal models were used to detect the proliferation and migration ability of HCC cells. Western blot analysis, qRT-PCR, immunofluorescence, small-interfering RNA (siRNA), and plasmid transfection and coimmunoprecipitation (Co-IP) assays were performed to detect the interaction among UBE2S, von Hippel-Lindau (VHL), hypoxia-inducible factor 1-alpha (HIF-1α), Janus kinase-2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). RESULTS: In this study, we found that high UBE2S expression was associated with poor prognosis in HCC patients. In addition, UBE2S expression was upregulated in HCC tissues and cell lines. Knockdown of UBE2S inhibited the proliferation and migration of HCC cells in vitro and in vivo by directly interacting with VHL to downregulate the HIF-1α and JAK2/STAT3 signaling pathways. Accordingly, overexpression of UBE2S significantly enhanced the proliferation and migration of HCC cells in vitro via VHL to upregulate HIF-1α and JAK2/STAT3 signaling pathways. Furthermore, we found that downregulation of UBE2S expression enhanced the sensitivity of HCC cells to sorafenib in vivo and in vitro. CONCLUSION: UBE2S enhances malignant properties via the VHL/HIF-1α and VHL/JAK2/STAT3 signaling pathways and reduces sensitivity to sorafenib in HCC. The findings of this study may open a new approach for HCC diagnosis and provide a potential option for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
15.
Cell Prolif ; 56(12): e13513, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37401015

ABSTRACT

Having been reported to be a crucial prognostic factor in solid tumours, the role of high endothelial venule (HEV) in intrahepatic cholangiocarcinoma (ICC) remains unclear, however. The data of ICC and healthy individuals were downloaded from the Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases. Meanwhile, a cutting-edge ICC high-resolution spatial transcriptome was also acquired before these data were comprehensively analysed using bioinformatics approaches. Moreover, 95 individuals with ICC who had undergone resection surgery were enrolled in this study to investigate the relationship between HEV and tumour microenvironment (TME) applying immunohistochemistry and multiple immunofluorescence techniques. The high-HEV subtype contains rich immune infiltrates including tertiary lymphoid structure (TLS), CD8+ T cells, and CD20+ B cells. Furthermore, HEV and TLS exhibited a strong relationship of spatial colocalization. Correlated with improved prognostic outcomes in ICC, the high-HEV subtype could be an independent prognostic indicator for individuals with ICC. This study revealed the association of HEV with immune function and observed a strong spatial colocalization correlation between HEV and TLS. Moreover, correlated with immunotherapeutic response, HEV could improve prognostic outcomes, which may be a potential indicator of immunotherapy pathology in ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Prognosis , Venules/metabolism , Venules/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/surgery , Biomarkers/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/surgery , Tumor Microenvironment
16.
Sci Rep ; 13(1): 10508, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380717

ABSTRACT

A fundamental goal in cancer-associated genome sequencing is to identify the key genes. Protein-protein interactions (PPIs) play a crucially important role in this goal. Here, human reference interactome (HuRI) map was generated and 64,006 PPIs involving 9094 proteins were identified. Here, we developed a physical link and co-expression combinatory network construction (PLACE) method for genes of interest, which provides a rapid way to analyze genome sequencing datasets. Next, Kaplan‒Meier survival analysis, CCK8 assays, scratch wound assays and Transwell assays were applied to confirm the results. In this study, we selected single-cell sequencing data from patients with hepatocellular carcinoma (HCC) in GSE149614. The PLACE method constructs a protein connection network for genes of interest, and a large fraction (80%) of the genes (screened by the PLACE method) were associated with survival. Then, PLACE discovered that transmembrane protein 14B (TMEM14B) was the most significant prognostic key gene, and target genes of TMEM14B were predicted. The TMEM14B-target gene regulatory network was constructed by PLACE. We also detected that TMEM14B-knockdown inhibited proliferation and migration. The results demonstrate that we proposed a new effective method for identifying key genes. The PLACE method can be used widely and make outstanding contributions to the tumor research field.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Prognosis , Liver Neoplasms/genetics , Chromosome Mapping , Sequence Analysis, RNA
17.
Adv Mater ; 35(36): e2212231, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37339461

ABSTRACT

The early detection of cancers can significantly change outcomes even with existing treatments. However, ~50% of cancers still cannot be detected until they reach an advanced stage, highlighting the great challenges in the early detection. Here, an ultrasensitive deep near-infrared (dNIR) nanoprobe that is successively responsive to tumor acidity and hypoxia is reported. It is demonstrated that the new nanoprobe specifically detects tumor hypoxia microenvironment based on deep NIR imaging in ten different types of tumor models using cancer cell lines and patient-tissue derived xenograft tumors. By combining the acidity and hypoxia specific two-step signal amplification with a deep NIR detection, the reported nanoprobe enables the ultrasensitive visualization of hundreds of tumor cells or small tumors with a size of 260 µm in whole-body imaging or 115 µm metastatic lesions in lung imaging. As a result, it reveals that tumor hypoxia can occur as early as the lesions contain only several hundred cancer cells.


Subject(s)
Early Detection of Cancer , Neoplasms , Humans , Neoplasms/diagnostic imaging , Neoplasms/pathology , Diagnostic Imaging , Cell Line , Hypoxia , Optical Imaging/methods , Tumor Microenvironment
18.
Sci Total Environ ; 893: 164890, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37329913

ABSTRACT

Although the natural occurrence of high chromium (Cr) groundwater has been intensively investigated in bedrock or sedimentary aquifers, the impacts of hydrogeological conditions on dissolved Cr distribution are poorly understood. In this study, groundwater samples from recharge mountain area (Zone I) through runoff area (Zone II) to discharge area (Zone III) were taken from bedrock and sedimentary aquifers approximately along the flow path in Baiyangdian (BYD) catchment, China, to reveal how hydrogeological conditions and hydrochemical evolution contributed to Cr enrichment in groundwater. Results showed that dissolved Cr was dominated by Cr(VI) species (>99 %). Around 20 % of studied samples had Cr(VI) exceeding 10 µg/L. Groundwater Cr(VI) was of natural origin, which generally increased along the flow path, and high concentrations (up to 80.0 µg/L) were observed in deep groundwater of Zone III. At the local scales, geochemical processes including silicate weathering, oxidation, and desorption under weakly alkaline pH, predominately contributed to Cr(VI) enrichment. Principal component analysis showed that oxic conditions were the principal control of Cr(VI) in Zone I, and geochemical processes (especially Cr(III) oxidation and Cr(VI) desorption) predominantly enhanced groundwater Cr(VI) enrichment in Zones II and III. However, at the regional scale, Cr(VI) enrichment was dominantly facilitated by the low flow rate and recharge of paleo-meteoric water due to the long-term water-rock interaction in the BYD catchment.

19.
Opt Lett ; 48(6): 1343-1346, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36946923

ABSTRACT

Photonic edge mode confining light in cavities of surface plasmons is beneficial in image and biosensor applications. In the terahertz band, however, the edge mode in a cavity of spoof localized surface plasmons has not matured sufficiently. Herein, a cost-effective strategy to achieve a terahertz photonic edge mode using a metasurface of strongly coupled fourfold spoof localized surface plasmons in a tetramer layout is demonstrated. The quality factors of edge modes decrease when the tetramer shrinks, as revealed by the terahertz dielectric functions. The edge modes that emerge can be categorized as inner and outer edge modes, as deduced from the simulated electric field distribution. Our results show that the edge modes are due to the interaction of spoof localized surface plasmons in the terahertz band.

20.
ACS Appl Mater Interfaces ; 15(10): 13753-13760, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877864

ABSTRACT

Molybdenum nitride (MoNx) was perceived as carrier-selective contacts (CSCs) for crystalline silicon (c-Si) solar cells due to having proper work functions and excellent conductivities. However, the poor passivation and non-Ohmic contact at the c-Si/MoNx interface endow an inferior hole selectivity. Here, the surface, interface, and bulk structures of MoNx films are systematically investigated by X-ray scattering, surface spectroscopy, and electron microscope analysis to reveal the carrier-selective features. Surface layers with the composition of MoO2.51N0.21 form upon air exposure, which induces the overestimated work function and explains the origin of inferior hole selectivities. The c-Si/MoNx interface is confirmed to adopt long-term stability, providing guidance for designing stable CSCs. A detailed evolution of the scattering length density, domain sizes, and crystallinity in the bulk phase is presented to elucidate its superior conductivity. These multiscale structural investigations offer a clear structure-function correlation of MoNx films, providing key inspiration for developing excellent CSCs for c-Si solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL