Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.306
Filter
1.
Materials (Basel) ; 17(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730932

ABSTRACT

With the rapid development of the new energy vehicle market, the demand for extruded profiles for battery trays, mainly characterized by significant wall thickness differences in multiple chambers, is increasing, posing new challenges to production and quality control. This study examines the multi-objective optimization problem in the design process of aluminum profile dies with multi-cavity profiles and significant wall thickness differences. Using QFORM-extrusion professional aluminum extrusion finite element analysis software and the response surface analysis method, the standard deviation of the velocity (SDV), standard deviation of the pressure (SDP), and thick wall hydrostatic pressure (TWHP) on the profile section at the die exit are optimized. By analyzing the functional relationship between the key die structure parameters (the height of the baffle plates, the length of the bearing, and the height of the false mandrel) and the optimization objective, the optimal combination scheme of die structure parameters was obtained using the NSGA2 (non-dominated sorting genetic algorithm-2) multi-objective genetic optimization algorithm. The results show that, compared with the initial design scheme, the standard deviation of profile section velocity was reduced by 5.33%, the standard deviation of pressure was reduced by 11.16%, and the thick wall hydrostatic pressure was increased by 26.47%. The die designed and manufactured using this scheme successfully completed the hot extrusion production task, and the profile quality met the predetermined requirements, thus verifying the effectiveness of this study in optimizing the design of a multi-cavity aluminum profile die with significant differences in wall thickness for complex structures.

2.
Bioelectrochemistry ; 159: 108730, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38762950

ABSTRACT

An electrochemical immunosensor based on the novel high efficiency catalytic cycle amplification strategy for the sensitive detection of cardiac troponin I (cTnI). With its variable valence metal elements and spiny yolk structure, the Cu2O/CuO@CeO2 nanohybrid exhibits high speed charge mobility and exceptional electrochemical performance. Notably, fluorite-like cubic crystal CeO2 shell would undergo redox reaction with Cu2O core, which successfully ensures the continuous recycling occurrence of "fresh" Cu (II)/Cu (I) and Ce (Ⅳ)/Ce (Ⅲ) pairs at the electrode interface. The "fresh" active sites continue to emerge constantly, resulting in a significant increase in the current signal. In light of the electrochemical characterization, the electron transfer pathway and catalytic cycle mechanism among CeO2, Cu2O and CuO were further discussed. The developed electrochemical immunosensor detected cTnI from 100 fg/mL to 100 ng/mL with a LOD of 15.85 fg/mL under optimal conditions. The analysis results indicate that the immunosensor would hold promise for broad application prospects in the biological detection for other biomarkers.

3.
Ultramicroscopy ; 263: 113986, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38762964

ABSTRACT

Nucleolin is overexpressed on the surface of pancreatic cancer cells and are regarded as the remarkable therapeutic target. Aptamers are capable of binding the external domain of nucleolin on the cell surface with high affinity and specificity. But nucleolin has not been localized on pancreatic cancer cells at very high spatial resolution, and the interactions between nucleolin and aptamers have not been investigated at very high force resolution level. In this work, nucleolin was localized on pancreatic cancer and normal cells by aptamers (9FU-AS1411-NH2, AS1411-NH2 and CRONH2) in Single Molecule Recognition Imaging mode of Atomic Force Microscopy. There are plenty of nucleolin on the surfaces of pancreatic cancer cells (area percentage about 5 %), while there are little nucleolin on the surfaces of normal cells. The interactions between three types of aptamers and nucleolins on the surfaces of pancreatic cancer cells were investigated by Single Molecule Force Spectroscopy. The unbinding forces of nucleolins-(9FU-AS1411-NH2) are larger than nucleolins-(AS1411-NH2). The dissociation activation energy on nucleolin-(9FU-AS1411-NH2) is higher than nucleolin-(AS1411-NH2), which indicates that the former complex is more stable and harder to dissociate than the later complex. There are no unbinding forces between nucleolin and CRONH2. All these demonstrate that nucleolin was localized on pancreatic cancer and normal cells at single molecule level quantitatively, and the interactions (unbinding forces and kinetics) between nucleolin and aptamers were studied at picoNewton level. The approaches and results of this work will pave new ways in the investigations of nucleolin and aptamers, and will also be useful in the studies on other proteins and their corresponding aptamers.

4.
medRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766218

ABSTRACT

The role of red blood cells (RBCs) in tumorigenesis is poorly understood. We previously identified RBC-microRNAs with aberrations linked to lung cancer, including miR-93-5p. Here we find that miR-93-5p levels are elevated in RBC-derived exosomes among lung cancer patients and are associated with their shorter survivals. RBC-derived miR-93-5p transfers to cancer cells primarily through the exosomal pathway. The transferred RBC-miR-93-5p can target PTEN in cancer cells, and hence increase cell proliferation, invasion, and migration. RBC-derived miR-93-5p accelerates, whereas targeting miR-93-5p diminishes tumor growth in xenograft models. These findings reveal a novel biological function of RBCs in tumorigenesis, where they facilitate cancer progression by transferring the oncomiR via exosomes, thereby offering new diagnostic and treatment strategies for lung cancer.

5.
World J Gastrointest Oncol ; 16(5): 1725-1736, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764838

ABSTRACT

Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques. These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research. This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids, and patient-derived organoids. The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed. The construction of gastric organoids involves several key steps, including cell extraction and culture, three-dimensional structure formation, and functional expression. Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori. In addition, in drug screening and development, gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials. They can also be used for precision medicine according to the specific conditions of patients with gastric cancer, to assess drug resistance, and to predict the possibility of adverse reactions. However, despite the impressive progress in the field of gastric organoids, there are still many unknowns that need to be addressed, especially in the field of regenerative medicine. Meanwhile, the reproducibility and consistency of organoid cultures are major challenges that must be overcome. These challenges have had a significant impact on the development of gastric organoids. Nonetheless, as technology continues to advance, we can foresee more comprehensive research in the construction of gastric organoids. Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine.

6.
Front Psychol ; 15: 1349451, 2024.
Article in English | MEDLINE | ID: mdl-38765827

ABSTRACT

Background: Hypertension is increasingly prevalent among young and middle-aged populations in rural China, accompanied by suboptimal self-management. Given that this population forms the backbone of the labor force, enhancing their self-management capabilities is crucial for improving overall population health. Studies indicate that individuals with good health literacy are more likely to effectively manage their health. Methods: Grounded in the health literacy skills framework, a model was constructed in this study to examine the impact of health literacy on self-management among young and middle-aged hypertensive patients in rural China. Meanwhile, the mediating roles of illness perception and self-efficacy were also verified. Using a multi-stage stratified random sampling method, 338 patients were recruited to participate in the study. Structural equation modeling was utilized to establish the relationship model, and bootstrap tests were carried out to examine the mediating effects. Results: The average self-management score was 70.45 ± 11.36. Health literacy exhibited a positive correlation with self-management (standardized ß = 0.372, p < 0.001). The mediating effects through illness perception and self-efficacy were 0.040 and 0.236, constituting 6.68 and 39.31% of the total effect, respectively. Conclusion: Illness perception and self-efficacy serve as parallel mediators amid the association between health literacy and self-management. Implementing psychological counseling and health education is imperative for augmenting self-management competence and cultivating an adaptive coping mentality.

7.
Infect Drug Resist ; 17: 1951-1960, 2024.
Article in English | MEDLINE | ID: mdl-38774035

ABSTRACT

Objective: The diagnosis of tubercular orthopedic implant-associated infection (TB-IAI) is challenging. This study evaluated the value of metagenomic next-generation sequencing (mNGS) for the diagnosis of TB-IAI and developed a standardized diagnostic procedure for TB-IAI. Methods: The records of all patients with TB-IAI diagnosed and treated at our institution between December 2018 and September 2022 were retrospectively reviewed. Patient demographic characteristics, medical history, laboratory test, microbial culture, histopathology, and mNGS results, and time to diagnosis were recorded. The diagnostic efficiency of mNGS for TB-IAI was assessed by comparing the results and diagnostic time with that of other diagnostic modalities. Results: Ten patients were included in the analysis, including eight with prosthetic joint infections and two with fracture-related infections. The mNGS positivity rate was 100% (10/10), which was higher than that of TB-antibody (11%, 1/9), real-time quantitative polymerase chain reaction (22%, 2/9), T-SPOT.TB (25%, 2/8), purified protein derivative (50%, 4/8), microbial culture (50%, 5/10), and histopathology (20%, 2/10). mNGS shortened the time to diagnosis of TB-IAI. A standardized diagnostic procedure for TB-IAI was developed based on the findings. Conclusion: mNGS is useful for the diagnosis of TB-IAI. mNGS is recommended in cases where it is difficult to identify a pathogen using routine diagnostic tests. The standardized diagnostic procedure might improve TB-IAI diagnosis. Importance: TB-IAI is a rare infection, which occurs after orthopedic surgery and hard to diagnose microbiologically. mNGS is a new detection technique not yet discussed in current literature as a means for TB-IAI diagnostics. Here we describe a cohort of patients with TB-IAI diagnosed by mNGS show high efficiency of mNGS for detection of this pathology and present a clinical algorithm supplementing conventional methods for TB-IAI assessment.

8.
Sci Total Environ ; 934: 173136, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734110

ABSTRACT

Acid mine drainage (AMD) has global significance due to its low pH and elevated heavy metal content, which have received widespread attention. After AMD irrigation in mining areas, heavy metals are distributed among soil layers, but the influencing factors and mechanisms remain unclear. AMD contamination of surrounding soil is primarily attributed to surface runoff and irrigation and causes significant environmental degradation. A laboratory soil column experiment was conducted to investigate the temporal and spatial distribution of the heavy metals Cd and Cu, as well as the impact of key environmental factors on the migration and transformation of these heavy metals following long-term soil pollution by AMD. After AMD addition, the soil exhibited a significant increase in acidity, accompanied by notable alterations in various environmental parameters, including soil pH, Eh, Fe(II) content, and iron oxide content. Over time, Cd and Cu in the soil mainly existed in the exchangeable and carbonate-bound fractions. In spatial terms, exchangeable Cu increased with increasing depth. Pearson correlation analysis indicated significant negative correlations between pH and Cu, Cd, and Eh in pore water, as well as negative correlations between pH and the exchangeable fraction of Cd (F1), carbonate-bound fraction of Cd (F2), and exchangeable fraction of Cu (F1) in the solid phase. Additionally, a positive correlation was observed between pH and the residual fraction of Cu (F5). Furthermore, the soil total Cd content exhibited a positive correlation with pyrophosphate-Fe (Fep) and dithionite-Fe (Fed), while CdF1, CdF2, total Cu, and CuF1 displayed positive correlations with Fep. Our findings indicate that the presence of AMD in soil leads to alterations in the chemical fractions of Cd and Cu, resulting in enhanced bioavailability. These results offer valuable insights for developing effective remediation strategies for soils near mining sites.

9.
Nat Commun ; 15(1): 4195, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760351

ABSTRACT

Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Ferritins , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Acrylamides/pharmacology , Acrylamides/therapeutic use , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Ferritins/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Oxidative Phosphorylation/drug effects , Animals , Mice , Copper/metabolism , Autophagy/drug effects , Mice, Nude , Indoles , Pyrimidines
10.
Ecol Evol ; 14(5): e11319, 2024 May.
Article in English | MEDLINE | ID: mdl-38694746

ABSTRACT

The family Limacodidae belongs to the superfamily Zygaenoidea, which includes 1672 species commonly referred to as slug moths. Limacodidae larvae are major pests for many economically important plant species and can cause human dermatitis. At present, the structure of the mitochondrial genome (mitogenome), phylogenetic position, and adaptive evolution of slug moths are poorly understood. Herein, the mitogenomes of Parasa lepida, Phlossa conjuncta, Thosea sinensis, and Setora sinensis were sequenced and compared with other available mitogenome sequences to better characterize the mitogenomic diversity and evolution of this moth family. The mitogenomes of P. lepida, P. conjuncta, T. sinensis, and S. sinensis were confirmed to be circular in structure with lengths of 15,575 bp, 15,553 bp, 15,535 bp, and 15,529 bp, respectively. The Limacodidae mitogenomes exhibited similar nucleotide composition, codon usage, RNA structure, and control region patterns, indicating the conservation of the mitogenome in the family Limacodidae. A sliding window, Ka/Ks, and genetic distance analyses revealed that the atp8 and nad6 genes exhibited the highest levels of variability and the most rapid evolutionary rates among the 13 protein-coding genes (PCGs) encoded in these Limacodidae mitogenomes, suggesting that they may offer value as candidate DNA markers. The phylogenetic analysis recovered the overall relationship as Tortricoidea + (Sesiidae + (Zygaenoidea + (Cossoidea/+Choreutoidea + (others)))). Within Zygaenoidea, Limacodidae was recovered as monophyletic, and the phylogenetic relationships were recovered as (Phaudidae + Zyganidae) + Limacodidae in all six phylogenetic trees. The analysis indicated that P. lepida, P. conjuncta, T. sinensis, and S. sinensis are members of the Limacodidae.

11.
Am J Otolaryngol ; 45(4): 104342, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38703609

ABSTRACT

OBJECTIVE: To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS: The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS: In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS: The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.

12.
Chin Herb Med ; 16(2): 293-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706826

ABSTRACT

Objective: To clear the amounts of the principal active/toxic components in herbs containing aristolochic acids (HCAAs), which are still used as medicine and/or seasoning in many ethnic minority areas of China. Methods: In this study, six major active and toxic components in HCAAs were extracted with ultrasonic extraction. With 6-O-methyl guanosine as internal standard, the target compounds were analyzed qualitatively and quantitatively by using ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) with multiple reaction monitoring-information dependent acquisition-enhanced production ion scanning mode (MRM-IDA-EPI) combined with dynamic background subtraction (DBS) function. Results: The method showed good linearity in the linear range of the six analytes. The limit range of detection was from 0.01 ng/mL to 0.27 ng/mL. All of the detection repeatability, extraction repeatability and accuracy of the method were good. After extraction, the samples remained stable at 15 °C within 24 h. Six analytes were all found in samples except aristolactam (AL) in sample 2, and the contents varied greatly. The contents of these compounds decreased in fruits, leaves and stems of Aristolochia delavayi successively. Conclusion: This method has the advantages of less sample dosage, simple operation, short analysis cycle, high sensitivity, specificity and accuracy. It laid a good foundation for guiding the safety of HCAAs, the in-depth study of pharmacological and toxicological effects and the scientific and standardized processing and compatibility of HCAAs.

13.
Heliyon ; 10(9): e29902, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707292

ABSTRACT

Objective: This study is aimed to screen, identify and detect illegal additives from healthcare products which claim or imply to have weight-loss effects. Method: Ultra-high performance liquid chromatography-quadruple-time-of-flight mass spectroscopy (UPLC-Q-TOF/MS) was employed to perform non-targeted screening of illegal additives from a total of 26 batches of healthcare products with weight-loss effects. A novel oxyphenisatin dipropionate analog was discovered in a fruit-flavored jelly that was not clearly labeled as containing added drugs. After being separated and purified by silica gel column chromatography, the analog was unambiguously characterized by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopies. The molecular structure of the analog was finally identified by comparing the spectra of the analog with those of suspected candidates prepared by de novo synthesis strategy. Thereafter, a sensitive and precise reversed phase ultra performance liquid chromatography coupled with photodiode array (UPLC-PDA) detection method was developed and verified for the determination of the analog in 15 batches of real samples. Results: In the MS/MS spectra, the signal intensity of mass/charge ratios (m/z, 242 and 214) of the novel analog fragments was highly similar to that of mass/charge ratios (m/z, 224 and 196) of oxyphenisatin dipropionate fragments. Additionally, the 1D NMR spectrum of the analog was completely consistent with that of one of the suspected candidates prepared by the de novo synthesis strategy. Based on the above analysis, the structure of the analog was determined as 3,3-bis[4'-(propionyloxy)phenyl]-6-fluoro-2-oxoindoline, which was briefly named 6-F oxyphenisatin dipropionate. A developed quantitative method showed good linearity (R2 > 0.999) in a concentration range of 1.0-100 µg/mL. The limits of detection (LOD) and quantification (LOQ) for the analog was 3 mg/kg and 10 mg/kg, respectively. The average recoveries of the analog from spiked three different matrix samples in low (1 time of LOQ), medium (2 times of LOQ), and high (10 times of LOQ) concentrations were varied from 93.9 % to 107.8 % with a precision of 0.03-1.56 %. Results of quantitative analysis in 15 batches of healthcare products revealed that the content of 6-F oxyphenisatin dipropionate in a fruit-flavored jelly and a solid beverage was 118 mg/kg and 330 mg/kg, respectively. Conclusion: In terms of its structure, 6-F oxyphenisatin dipropionate replaces hydrogen atom by the fluorine atom at position 6 on the indolinone fragment in oxyphenisatin dipropionate. To our best knowledge, 6-F oxyphenisatin dipropionate has never been detected as an illegal additive in foods. Such illegal addition of the analog to foods is more concealing, thus the supervision and testing departments should attach great importance to its application in food markets.

14.
Heliyon ; 10(9): e30295, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707381

ABSTRACT

The exact processes underlying atrial fibrillation (AF) are still unclear. It has been suggested that epicardial adipose tissue (EAT) may contribute to arrhythmias and can release various bioactive molecules, including exosomes containing tRNA-derived small RNAs (tsRNAs). Numerous studies have indicated that these tsRNAs can significantly affect key cellular functions. However, there is currently no research investigating the relationship between tsRNAs from EAT and AF. In order to explore the regulatory mechanisms of tsRNAs from EAT associated with AF, we conducted RNA-sequencing analysis on EAT samples collected from 6 AF patients and 6 control subjects with sinus rhythm. Our analysis revealed an upregulation of 146 tsRNAs and a downregulation of 126 tsRNAs in AF. Furthermore, we randomly selected four tsRNAs (tRF-SeC-TCA-001, tiRNA-Gly-CCC-003, tRF-Gly-GCC-002, and tRF-Tyr-GTA-007) for validation using quantitative reverse transcription-polymerase chain reaction. Following this, bioinformatic analyses revealed that the target genes of these tsRNAs were prominently involved in the regulation of cell adhesion and various cellular processes mediated by plasma membrane adhesion molecules. Additionally, based on KEGG analysis, it was suggested that the majority of these target genes might contribute to the pathogenesis of AF through processes such as glycosaminoglycan biosynthesis, AMP-activated protein kinase activity, and the insulin signaling pathway. Our results elucidate changes in the expression profiles of tsRNAs within EAT samples obtained from AF patients, and they forecast potential target genes and interactions between tsRNAs and mRNA within EAT that could contribute to the pathogenesis of AF.

15.
Clin Med Insights Case Rep ; 17: 11795476241253107, 2024.
Article in English | MEDLINE | ID: mdl-38746687

ABSTRACT

Excessive water consumption is an extremely rare and potential asthma risk factor with very few cases reported in the literature. Common triggers of asthma include genetic factors, smoking, allergens, and viral respiratory infections. The adult patient with asthma reportedly drank too much water and was unable to get relief from his asthma while hospitalized. The patient's asthma was better controlled with the use of diuretics and control of the patient's fluid intake and output. This case explores asthma induced by excessive drinking of water.

17.
J Agric Food Chem ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592417

ABSTRACT

Bioactive peptides have been shown to affect cell membrane fluidity, which is an important indicator of the cell membrane structure and function. However, the underlying mechanism of egg white-derived bioactive peptide regulation of cell membrane fluidity has not been elucidated yet. The cell membrane fluidity was investigated by giant unilamellar vesicles in the present study. The results showed that peptides TCNW, ADWAK, ESIINF, VPIEGII, LVEEY, and WKLC connect to membranes through intermolecular interactions, such as hydrogen bonding and regulated membrane fluidity, in a concentration-dependent way. In addition, peptides prefer to localize in the hydrophobic core of the bilayers. This study provides a theoretical basis for analyzing the localization of egg white bioactive peptides in specific cell membrane regions and their influence on the cell membrane fluidity.

18.
Bio Protoc ; 14(7): e4966, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38618175

ABSTRACT

Contractile injection systems (CISs), one of the most important bacterial secretion systems that transport substrates across the membrane, are a collection of diverse but evolutionarily related macromolecular devices. Numerous effector proteins can be loaded and injected by this secretion complex to their specific destinations. One group of CISs called extracellular CIS (eCIS) has been proposed as secretory molecules that can be released from the bacterial cytoplasm and attack neighboring target cells from the extracellular environment. This makes them a potential delivery vector for the transportation of various cargos without the inclusion of bacterial cells, which might elicit certain immunological responses from hosts. We have demonstrated that the Photorhabdus virulence cassette (PVC), which is a typical eCIS, could be applied as an ideal vector for the translocation of proteinaceous cargos with different physical or chemical properties. Here, we describe the in-depth purification protocol of this mega complex from Escherichia coli. The protocol provided is a simpler, faster, and more productive way of generating the eCIS complexes than available methodologies reported previously, which can facilitate the subsequent applications of these nanodevices and other eCIS in different backgrounds.

19.
Small ; : e2309075, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597772

ABSTRACT

The improper use and overuse of antibiotics have led to significant burdens and detrimental effects on the environment, food supply, and human health. Herein, a magnetic solid-phase extraction program and an optical immunosensor based on bimetallic Ce/Zr-UiO 66 for the detection of antibiotics are developed. A magnetic Fe3O4@SiO2@Ce/Zr-UiO 66 metal-organic framework (MOF) is prepared to extract and enrich chloramphenicol from fish, wastewater, and urine samples, and a horseradish peroxidase (HRP)-Ce/Zr-UiO 66@bovine serum protein-chloramphenicol probe is used for the sensitive detection of chloramphenicol based on the dual-effect catalysis of Ce and HRP. In this manner, the application of Ce/Zr-UiO 66 in integrating sample pretreatment and antibiotic detection is systematically investigated and the associated mechanisms are explored. It is concluded that Ce/Zr-UiO 66 is a versatile dual-track material exhibiting high enrichment efficiency (6.37 mg g-1) and high sensitivity (limit of detection of 51.3 pg mL-1) for chloramphenicol detection and serving as a multifunctional MOF for safeguarding public health and hygiene.

20.
Carbohydr Polym ; 335: 122059, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616073

ABSTRACT

Cellulose-based humidity sensors have attracted great research interest due to their hydrophilicity, biodegradability, and low cost. However, they still suffer from relatively low humidity sensitivity. Due to the presence of negatively charged carboxylate groups, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (CNF) exhibits enhanced hydrophilicity and ion conductivity, which is considered a promising candidate for humidity sensing. In this work, we developed a facile strategy to improve the humidity sensitivity of CNF films by regulating their surface charge density. With the increase in surface charge density, both water uptake and charge carrier densities of the CNF films can be improved, enabling a humidity sensitivity of up to 44.5 % (%RH)-1, higher than that of most polymer-based humidity sensors reported in the literature. Meanwhile, the sensor also showed good linearity (R2 = 0.998) over the 15-75 % RH at 1 kHz. With these features, the CNF film was further demonstrated for applications in noncontact sensing, such as human respiration, moisture on fingertips, and water leakage, indicating the great potential of CNF film in humidity monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...