Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(11): 9107-9119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749345

ABSTRACT

BACKGROUND: Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. METHODS AND RESULTS: We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. CONCLUSION: Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.


Subject(s)
Arabidopsis , Calycanthaceae , Calycanthaceae/genetics , Calycanthaceae/chemistry , Calycanthaceae/metabolism , Phylogeny , Flowers/metabolism , Plant Leaves/metabolism , Genes, Plant , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism
2.
Genes Genomics ; 45(9): 1127-1141, 2023 09.
Article in English | MEDLINE | ID: mdl-37438657

ABSTRACT

BACKGROUND: MIKC type MADS-box transcription factors are one of the largest gene families and play a pivotal role in flowering time and flower development. Chimonanthus salicifolius belongs to the family Calycanthaceae and has a unique flowering time and flowering morphology compared to other Chimonanthus species, but the research on MIKC type MADS-box gene family of C. salicifolius has not been reported. OBJECTIVE: Identification, comprehensive bioinformatic analysis, the expression pattern of MIKC-type MADS-box gene family from different tissues of C. salicifolius. METHODS: Genome-wide investigation and expression pattern under different tissues of the MIKC-type MADS-box gene family in C. salicifolius, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element were performed. RESULTS: A total of 29 MIKC-type MADS-box genes were identified from the whole genome sequencing. Interspecies synteny analysis revealed more significant collinearity between C. salicifolius and the magnoliids species compared to eudicots and monocots. MIKC-type MADS-box genes from the same subfamily share similar distribution patterns, gene structure, and expression patterns. Compared with Arabidopsis thaliana, Nymphaea colorata, and Chimonanthus praecox, the FLC genes were absent in C. salicifolius, while the AGL6 subfamily was expanded in C. salicifolius. The selectively expanded promoter (AGL6) and lack of repressor (FLC) genes may explain the earlier flowering in C. salicifolius. The loss of the AP3 homologous gene in C. salicifolius is probably the primary cause of the morphological distinction between C. salicifolius and C. praecox. The csAGL6a gene is specifically expressed in the flowering process and indicates the potential function of promoting flowering. CONCLUSION: This study offers a genome-wide identification and expression profiling of the MIKC-types MADS-box genes in the C. salicifolius, and establishes the foundation for screening flowering development genes and understanding the potential function of the MIKC-types MADS-box genes in the C. salicifolius.


Subject(s)
Genome, Plant , MADS Domain Proteins , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Gene Expression , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...