Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Medicine (Baltimore) ; 103(37): e39589, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39287297

ABSTRACT

The detrimental effects of obesity on sleep disorders have garnered a lot of interest. The weight-adjusted waist index (WWI) is a newly developed anthropometric index calculated in terms of weight and waist circumference. The body mass index has been employed to evaluate obesity in the majority of studies that connect obesity to sleep disorders. This study seeks to investigate the correlation between WWI and sleep disorders among adults in the United States. This cross-sectional study was part of the National Health and Nutrition Examination Survey and included adults aged >20 from 2005 to 2008. This study investigated the linear relationship between sleep disorders and WWI using weighted binary logistic regression models. Nonlinear relationships were characterized using smooth curve fitting and threshold effects analyses. After that, based on variables like gender, age, marital status, diabetes, hypertension, and smoking, subgroup analyses were performed. Our study included 9869 participants who were at least 20 years old. Higher WWI was linked to greater odds of sleep disorders prevalence, according to weighted binary logistic regression (odds ratio = 1.15; 95% confidence interval, 1.10, 1.20). In subgroup analyses based on age, marital status, diabetes, hypertension, and smoking, this connection remained robust. However, there were notable differences in this connection depending on gender. Furthermore, a nonlinear correlation with inflection points between WWI and sleep disorders was shown using smooth curve fitting. The nonlinear association between WWI and sleep disorders has an inflection point of 8.1 cm/√kg, as indicated by the threshold effect analyses. A higher WWI exposure may elevate the odds of sleep disorder prevalence, underscoring the importance of considering WWI in the prevention and management of sleep disorders.


Subject(s)
Nutrition Surveys , Sleep Wake Disorders , Waist Circumference , Humans , Male , Female , Adult , Cross-Sectional Studies , United States/epidemiology , Middle Aged , Sleep Wake Disorders/epidemiology , Obesity/epidemiology , Prevalence , Body Mass Index , Young Adult , Aged , Risk Factors , Logistic Models
2.
Discov Oncol ; 15(1): 363, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167254

ABSTRACT

BACKGROUND: To retrospectively analyze the risk factors of liver metastases in patients with gastric cancer in a single center, and to establish a Nomogram prediction model to predict the occurrence of liver metastases. METHODS: A total of 96 patients with gastric cancer who were also diagnosed with liver metastasis (GCLM) and treated in our center from January 1, 2010 to December 31, 2020 were included. The clinical data of 1095 patients with gastric cancer who were diagnosed without liver metastases (GC) in our hospital from January 1, 2014 to December 31, 2017 were retrospectively compared by univariate and multivariate logistic regression. 309 patients diagnosed with gastric cancer in another medical center from January 1, 2014 to December 31, 2018 were introduced as external validation cohorts. RESULTS: Based on the training cohort, multivariate analysis revealed that tumor site (OR = 0.55, P = 0.046), N stage (OR = 4.95, P = 0.004), gender (OR = 0.04, P = 0.001), OPNI (OR = 0.95, P = 0.041), CEA (OR = 1.01, P = 0.018), CA724 (OR = 1.01, P = 0.006), CA242 (OR = 1.01, P = 0.006), WBC (OR = 1.13, P = 0.024), Hb (OR = 0.98, P < 0.001) were independent risk factors for liver metastasis in patients with gastric cancer, and Nomogram was established based on this analysis (C-statistics = 0.911, 95%CI 0.880-0.958), and the C-statistics of the external validation cohorts achieved 0.926. ROC analysis and decision curve analysis (DCA) revealed that the nomogram provided superior diagnostic value than single variety. CONCLUSIONS: By innovatively introducing a new tumor location classification method, systemic inflammatory response indicators such as NLR and PLR, and nutritional index OPNI, the risk factors of gastric cancer liver metastasis were determined and a predictive Nomogram model was established, which can provide clinical prediction for patients with gastric cancer liver metastasis.

3.
Adv Sci (Weinh) ; : e2405303, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135539

ABSTRACT

The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862 V), short circuit-current density (JSC, 27.52 mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.

4.
Microorganisms ; 12(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39203359

ABSTRACT

Wheat is a vital global food crop, yet it faces challenges in saline-alkali soils where Fusarium crown rot significantly impacts growth. Variations in wheat growth across regions are often attributed to uneven terrain. To explore these disparities, we examined well-growing and poorly growing wheat samples and their rhizosphere soils. Measurements included wheat height, root length, fresh weight, and Fusarium crown rot severity. Well-growing wheat exhibited greater height, root length, and fresh weight, with a lower Fusarium crown rot disease index compared to poorly growing wheat. Analysis of rhizosphere soil revealed higher alkalinity; lower nutrient levels; and elevated Na, K, and Ca levels in poorly growing wheat compared to well-growing wheat. High-throughput sequencing identified a higher proportion of unique operational taxonomic units (OTUs) in poorly growing wheat, suggesting selection for distinct fungal species under stress. FUNGuild analysis indicated a higher prevalence of pathogenic microbial communities in poorly growing wheat rhizosphere soil. This study underscores how uneven terrains in saline-alkali soils affect pH, nutrient dynamics, mineral content, wheat health, and rhizosphere fungal community structure.

5.
J Hazard Mater ; 478: 135530, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39159580

ABSTRACT

The impact of the Coronavirus Disease 2019 (COVID-19) pandemic on microplastic (MP) occurrence in aquatic environments deserves an in-depth study. In this study, the occurrence of MPs and environmental flux of plastics before (2019) and during (2020 and 2021) the pandemic were comparatively investigated in various aquatic compartments in the Taihu Lake Basin in China. The field-based investigations from 2019 to 2021 for Taihu Lake have shown that, at the onset of the outbreak, the MP abundance declined at a rate of 62.3 %, but gradually recovered to the pre-pandemic level. However, the amount of plastics being released into aquatic environments showed a declining trend in 2020 and 2021 compared to those in 2019, with decrease rates of 13.7 % and 15.8 %, respectively. Characterization analysis of MP particles and source apportionment framework implied that while the contributions of tire abrasion and domestic waste to MP occurrence were depleted owing to the reduction in human activity during the pandemic, weathering and fragmentation of retained plastics contributed to the recovery of stored MPs. This study provides insights into the anthropogenic influences on MP occurrence, and supports policymakers in managing and controlling plastic contamination in large freshwater systems in the "new normal" phase.


Subject(s)
COVID-19 , Environmental Monitoring , Lakes , Microplastics , Water Pollutants, Chemical , COVID-19/epidemiology , China/epidemiology , Microplastics/analysis , Water Pollutants, Chemical/analysis , Humans , SARS-CoV-2 , Pandemics
6.
BMC Microbiol ; 24(1): 235, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956452

ABSTRACT

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDAC) display an altered oral, gastrointestinal, and intra-pancreatic microbiome compared to healthy individuals. However, knowledge regarding the bile microbiome and its potential impact on progression-free survival in PDACs remains limited. METHODS: Patients with PDAC (n = 45), including 20 matched pairs before and after surgery, and benign controls (n = 16) were included prospectively. The characteristics of the microbiomes of the total 81 bile were revealed by 16  S-rRNA gene sequencing. PDAC patients were divided into distinct groups based on tumor marker levels, disease staging, before and after surgery, as well as progression free survival (PFS) for further analysis. Disease diagnostic model was formulated utilizing the random forest algorithm. RESULTS: PDAC patients harbor a unique and diverse bile microbiome (PCoA, weighted Unifrac, p = 0.038), and the increasing microbial diversity is correlated with dysbiosis according to key microbes and microbial functions. Aliihoeflea emerged as the genus displaying the most significant alteration among two groups (p < 0.01). Significant differences were found in beta diversity of the bile microbiome between long-term PFS and short-term PFS groups (PCoA, weighted Unifrac, p = 0.005). Bacillota and Actinomycetota were identified as altered phylum between two groups associated with progression-free survival in all PDAC patients. Additionally, we identified three biomarkers as the most suitable set for the random forest model, which indicated a significantly elevated likelihood of disease occurrence in the PDAC group (p < 0.0001). The area under the receiver operating characteristic (ROC) curve reached 80.8% with a 95% confidence interval ranging from 55.0 to 100%. Due to the scarcity of bile samples, we were unable to conduct further external verification. CONCLUSION: PDAC is characterized by an altered microbiome of bile ducts. Biliary dysbiosis is linked with progression-free survival in all PDACs. This study revealed the alteration of the bile microbiome in PDACs and successfully developed a diagnostic model for PDAC.


Subject(s)
Bile , Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Bile/microbiology , Male , Female , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Microbiota/genetics , Middle Aged , Aged , Dysbiosis/microbiology , Progression-Free Survival , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Prospective Studies , RNA, Ribosomal, 16S/genetics
7.
Macromol Rapid Commun ; 45(18): e2400289, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39073047

ABSTRACT

Microcapsules have attracted significant attention in academia and industry due to their unique properties for protecting and controlling the release of active substances. However, based on water-insoluble biopolymers, developing a straightforward approach to prepare microcapsules with improved biocompatibility and functional shells remains a great challenge. In this study, zein, a water-insoluble protein, is employed to prepare robust microcapsules facilely using oil-in-aqueous ethanol Pickering emulsions as templates. First, the emulsion template is stabilized by hydrophobic silica nanoparticles with in situ surface modification of tannic acid. The zein is then precipitated at the interface in a controlled manner using antisolvent approach to obtain silica/tannic acid/zein (STZ) microcapsules. It is found that the concentration of zein and the presence of tannic acid played a significant role in the formation of STZ microcapsules with well-defined morphology and a robust shell. The uniform deposition of zein on the surface of template droplets is facilitated by the interactions between tannic acid and zein via hydrogen bond and electrostatic force. Finally, the resulting STZ microcapsules showed super resistance to ultraviolet (UV) radiation and high temperature for the unstable, lipophilic, and active substance of ß-carotene.


Subject(s)
Capsules , Emulsions , Silicon Dioxide , Tannins , Zein , Zein/chemistry , Tannins/chemistry , Emulsions/chemistry , Capsules/chemistry , Silicon Dioxide/chemistry , Particle Size , Hydrophobic and Hydrophilic Interactions , Surface Properties , beta Carotene/chemistry , Water/chemistry , Polyphenols
8.
J Fungi (Basel) ; 10(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38921366

ABSTRACT

The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated the N-terminal lysine residues of histone H3 in Fusarium pseudograminearum, the main causal agent of Fusarium crown rot of wheat in China, which also produces deoxynivalenol (DON) toxins harmful to humans and animals. Our findings reveal that all the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants are vital for vegetative growth and conidiation. Additionally, FpH3K14 regulates the pathogen's sensitivity to various stresses and fungicides. Despite the slowed growth of the FpH3K9R and FpH3K23R mutants, their pathogenicity towards wheat stems and heads remains unchanged. However, the FpH3K9R mutant produces more DON. Furthermore, the FpH3K14R and FpH3K18R mutants exhibit significantly reduced virulence, with the FpH3K18R mutant producing minimal DON. In the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants, there are 1863, 1400, 1688, and 1806 downregulated genes, respectively, compared to the wild type. These downregulated genes include many that are crucial for growth, conidiation, pathogenicity, and DON production, as well as some essential genes. Gene ontology (GO) enrichment analysis indicates that genes downregulated in the FpH3K14R and FpH3K18R mutants are enriched for ribosome biogenesis, rRNA processing, and rRNA metabolic process. This suggests that the translation machinery is abnormal in the FpH3K14R and FpH3K18R mutants. Overall, our findings suggest that H3 N-terminal lysine residues are involved in regulating the expression of genes with important functions and are critical for fungal development and pathogenicity.

9.
Pathogens ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921802

ABSTRACT

Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 µmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 µm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.

10.
Front Microbiol ; 15: 1405115, 2024.
Article in English | MEDLINE | ID: mdl-38873144

ABSTRACT

Fusarium crown rot (FCR) is one of the most important soilborne diseases affecting wheat production. To investigate the diversity of the pathogens causing this disease, 199 diseased wheat samples were collected from 13 cities in Shandong province. In total, 468 isolates were obtained, and from these isolates, 11 Fusarium species were identified based on phylogenetic analyses with the translation elongation factor-1α (TEF-1α), RNA polymerase II largest subunit (RPB1), and RNA polymerase II second largest subunit (RPB2) gene sequences. Of these Fusarium isolates, 283 were identified as Fusarium pseudograminearum and the remaining isolates were identified as Fusarium graminearum (n = 113), Fusarium sinensis (n = 28), Fusarium acuminatum (n = 18), Fusarium incarnatum (n = 13), Fusarium ipomoeae (n = 5), Fusarium flocciferum (n = 3), Fusarium proliferatum (n = 2), Fusarium asiaticum (n = 1), Fusarium culmorum (n = 1), and Fusarium oxysporum (n = 1), suggesting that F. pseudograminearum is the dominant pathogen of FCR of wheat in Shandong province. Pathogenicity tests demonstrated that all 11 Fusarium species could cause typical symptoms of FCR on wheat seedlings. The results of the study indicate that a greater diversity of Fusarium species can cause FCR of wheat in Shandong province than that has been previously reported. This is the first report in the world of Fusarium incarnatum, Fusarium ipomoeae, and Fusarium flocciferum as pathogens causing FCR in wheat.

11.
Langmuir ; 40(27): 13903-13911, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38920295

ABSTRACT

Pickering double emulsions exhibit higher stability and biocompatibility compared with surfactant-stabilized double emulsions. However, tailored synthesis of particle stabilizers with appropriate wettability is time consuming and complicated and usually limits their large-scale adoption. Using binary stabilizers may be a simple and scalable strategy for Pickering double emulsion formation. Herein, commercially available hydrophobic silica nanoparticles (SNPs) and sodium alginate (SA) as binary stabilizers are used to prepare O/W/O Pickering double emulsions in one-step emulsification. The influence of system composition on double emulsion preparation is identified by optical microscopy, confocal laser scanning microscopy, and interfacial tension and water contact angle analyses. The formation of the O/W/O Pickering double emulsion depends critically on the aqueous phase viscosity and occurrence of emulsion inversion. Both hydrophobic SNPs and SA adsorb at the droplet surface to provide a steric barrier, while SA also reduces interfacial tension and increases aqueous phase viscosity, giving double emulsion long-term stability. Their microstructure and stability are controlled by adjusting the SA concentration, water-oil volume ratio, concentration and wettability of the particle stabilizer, and oil type. As a demonstration, the middle layer of the as-prepared O/W/O Pickering double emulsions can be cross-linked in situ with calcium ions to produce calcium alginate porous microspheres. We believe that our strategy for double emulsion formation holds great potential for practical applications in food, cosmetics, or pharmaceuticals.

12.
Small ; 20(32): e2309712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38767499

ABSTRACT

Bromine-based flow batteries (BFB) have always suffered from poor kinetics due to the sluggish Br3 -/Br- redox, hindering their practical applications. Developing cathode materials with high catalytic activity is critical to address this challenge. Herein, the in-depth investigation for the free energy of the bromine redox electrode is conducted initially through DFT calculations, establishing the posterior desorption during oxidation as the rate-determining step. An urchin-like titanium nitride hollow sphere (TNHS) composite is designed and synthesized as the catalyst for bromine redox. The large difference in Br- and Br3 - adsorption capability of TNHS promotes rapid desorption of generated Br3 - during the oxidation process, liberating active sites timely to enable smooth ongoing reactions. Besides, the urchin-like microporous/mesoporous structure of TNHS provides abundant active surface for bromine redox reactions, and ample cavities for the bromine accommodation. The inherently high conductivity of TNHS enables facile electron transfer through multiple channels. Consequently, zinc-bromide flow batteries with TNHS catalyst exhibit significantly enhanced kinetics, stably operating at 80 mA cm-2 with 82.78% energy efficiency. Overall, this study offers a solving strategy and catalyst design approach to the sluggish kinetics that has plagued bromine-based flow batteries.

14.
PLoS One ; 19(4): e0290150, 2024.
Article in English | MEDLINE | ID: mdl-38558006

ABSTRACT

In order to improve the interior sound quality of Electric Vehicles (EV), solve the problem of low sense of power and comfort of the interior sound as well as the large electromagnetic excitation order noise of motor and the sharp interior sound, this article designs a dynamic active sound control system for EV under accelerated driving conditions. Firstly, by comparing and analyzing the sound spectrum characteristics of fuel vehicle (FV) and EV during acceleration, a short-time Fourier transform (STFT) is adopted to extract and synthesize the engine sound. Secondly, the influence of the engine order composition and the energy distribution in the frequency domain on the sound quality of the vehicle is analyzed, and an active control system for sound quality is proposed. And the software and hardware development of the active control sound system is completed. Finally, through real-vehicle testing and verification, the sense of comfort and power of the EV interior sound has been greatly improved during acceleration, and the total value of interior sound can meet the requirement. The sound pressure level and loudness of interior sound have been increased, and the sharpness of the sound inside the vehicle has been improved, with a maximum reduction of 1.0acum.


Subject(s)
Automobiles , Sound , Noise , Electricity , Acceleration
15.
Heliyon ; 10(7): e27407, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590864

ABSTRACT

In order to improve the interior sound quality of electric vehicles (EVs) under acceleration and uniform speed conditions, to balance the comfort and dynamics of the interior sound, and to improve the accuracy and performance of the active sound generation system (ASGS), this article carries out the research related to the parameter design, sound calibration, evaluation methodology, and control system of the EV ASGS. Propose an in-vehicle sound design method focusing on three dimensions, including engine order composition, spectral energy distribution, and sound amplitude enhancement in the typical speed range, and determine the in-vehicle sound design scheme and the total sound value target. Focus on the sound parameter design, calibration and evaluation methods of EV ASGS considering the frequency response characteristics of the loudspeaker, sound amplitude control accuracy, sound quality, and psychoacoustic parameters, clarify the active sound parameter settings of EVs, complete the analysis of sound extraction methods, complete the engine order sound fitting, and design the ASGS of the EV interior by combining the subjective and objective evaluations. Develop the control software and hardware of the ASGS, complete the construction and accuracy verification of the ASGS based on the in-vehicle sound system, and realize the sound calibration of the ASGS under the static conditions of the real vehicle and the verification of the target achievement. The real-vehicle test shows that the ASGS reduces the sharpness of 1.0 acum and 0.52 acum under acceleration and constant speed conditions, respectively, and improves the comfort and dynamics of in-vehicle sound. The objective and subjective evaluation results show that the parameter design, selection and accuracy of the sound calibration and evaluation methods of the ASGS in the EV determines the accuracy and effect of the ASGS.

16.
Nanoscale Horiz ; 9(6): 1052, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38656282

ABSTRACT

Correction for 'Pickering emulsion templated proteinaceous microparticles as glutathione-responsive carriers for endocytosis in tumor cells' by Weijie Jiang et al., Nanoscale Horiz., 2024, 9, 536-543, https://doi.org/10.1039/D3NH00551H.

17.
ACS Biomater Sci Eng ; 10(4): 2270-2281, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38536862

ABSTRACT

Tumor hypoxia-associated drug resistance presents a major challenge for cancer chemotherapy. However, sustained delivery systems with a high loading capability of hypoxia-inducible factor-1 (HIF-1) inhibitors are still limited. Here, we developed an ultrastable iodinated oil-based Pickering emulsion (PE) to achieve locally sustained codelivery of a HIF-1 inhibitor of acriflavine and an anticancer drug of doxorubicin for tumor synergistic chemotherapy. The PE exhibited facile injectability for intratumoral administration, great radiopacity for in vivo examination, excellent physical stability (>1 mo), and long-term sustained release capability of both hydrophilic drugs (i.e., acriflavine and doxorubicin). We found that the codelivery of acriflavine and doxorubicin from the PE promoted the local accumulation and retention of both drugs using an acellular liver organ model and demonstrated significant inhibition of tumor growth in a 4T1 tumor-bearing mouse model, improving the chemotherapeutic efficacy through the synergistic effects of direct cytotoxicity with the functional suppression of HIF-1 pathways of tumor cells. Such an iodinated oil-based PE provides a great injectable sustained delivery platform of hydrophilic drugs for locoregional chemotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Emulsions/therapeutic use , Acriflavine/pharmacology , Acriflavine/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Therapy, Combination , Hypoxia/drug therapy
18.
Polymers (Basel) ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475330

ABSTRACT

Microalgae are highly regarded as ideal materials for the creation of liquid biofuels and have substantial potential for growth and utilization. However, traditional storage and culture methods for microalgae are plagued by challenges such as uncontrolled growth, bacterial contamination, and self-shading among algae. These issues severely impede the photosynthetic process and the efficient extraction of biomass energy. This study tackles these problems by utilizing magnetic hydrophobic protein particles to stabilize water-in-oil Pickering emulsions. This allows for the micro-compartment storage and magnetic transfer of algae. Additionally, the successful encapsulation of Chlorella cells in high-internal-phase water-in-oil Pickering emulsions effectively mitigates the settling problem of Chlorella cells in the liquid phase, thereby enabling the potential use of Pickering emulsions for the confined cultivation of microalgae.

19.
Biomol Biomed ; 24(5): 1231-1243, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-38520747

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a notably aggressive malignancy with limited treatment options and an unfavorable prognosis for patients. We aimed to investigate molecular mechanisms by which Sam's pointed domain-containing ETS transcription factor (SPDEF) exerts effects on PAAD progression. We analyzed differentially expressed genes (DEGs) and their integration with ETS family members using the The Cancer Genome Atlas (TCGA) database, hence identifying SPDEF as a core gene in PAAD. Kaplan-Meier survival analysis confirmed SPDEF's prognostic potential. In vitro experiments validated the association with cell proliferation and apoptosis, affecting pancreatic cancer cell dynamics. We detected increased SPDEF expression in PAAD tumor samples. Our in vitro studies revealed that SPDEF regulates mRNA and protein expression levels, and significantly affects cell proliferation. Moreover, SPDEF was associated with reduced apoptosis and enhanced cell migration and invasion. In-depth analysis of SPDEF-targeted genes revealed four crucial genes for advanced prognostic model, among which S100A16 was significantly correlated with SPDEF. Mechanistic analysis showed that SPDEF enhances the transcription of S100A16, which in turn enhances PAAD cell migration, proliferation, and invasion by activating the PI3K/AKT signaling pathway. Our study revealed the critical role of SPDEF in promoting PAAD by upregulating S100A16 transcription and stimulating the PI3K/AKT signaling pathway. This knowledge deepened our understanding of pancreatic cancer's molecular progression and unveiled potential therapeutic strategies targeting SPDEF-driven pathways.


Subject(s)
Adenocarcinoma , Disease Progression , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-ets , Signal Transduction , Up-Regulation , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Male , Prognosis , Female , S100 Proteins
20.
Nanoscale Horiz ; 9(4): 536-543, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38390971

ABSTRACT

The use of glucose oxidase (GOx) to disrupt glucose supply has been identified as a promising strategy in cancer starvation therapy. However, independent delivery of GOx is prone to degradation upon exposure to biological conditions and may cause damage to blood vessels and normal organs during transportation. Although some carriers can protect GOx from the surrounding environment, the harsh preparation conditions may compromise its activity. Moreover, the commonly used materials often exhibit poor biocompatibility and possess certain cytotoxicity. To address this issue, we developed a gentle and efficient method based on Pickering emulsion templates to synthesize protein-based microparticles using zein as the matrix material. These microparticles have high stability and can be tailored to efficiently encapsulate biomolecules while preserving their activity. Moreover, the zein-based microparticles can be triggered to release biomolecules in tumor cells under high glutathione levels, demonstrating excellent responsiveness, biocompatibility, and low cytotoxicity. Additionally, when loaded with GOx, these protein-based microparticles effectively deprive tumor cells of nutrients and induce apoptosis by generating high levels of H2O2, thereby exhibiting enhanced anticancer properties.


Subject(s)
Zein , Emulsions , Hydrogen Peroxide , Endocytosis , Glutathione , Glucose Oxidase
SELECTION OF CITATIONS
SEARCH DETAIL